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Anthropogenic climate change and urban development patterns are increasing

flood risks in the United States (US). While mitigation and adaptation measures

have the potential to manage these risks and promote climate resilient development,

recent evidence suggests current adaptation actions are not keeping pace with grow-

ing climate-related risks. This dissertation aims to provide households, firms, and

policymakers with relevant information on key aspects of household asset exposure

and vulnerability to support decision-making toward effective and equitable flood risk

reduction. Chapter 1 contains the introduction. Chapter 2 evaluates housing assets’

exposure to anthropogenic sea level rise (SLR), market responses following publica-

tion of a watershed scientific report on SLR, and the role of residential property value

metrics in Federal flood infrastructure allocation policy processes. Evidence from

this chapter indicates acute extant flood risk, not SLR, drives negative price effects,

and status quo use of unweighted property values in Federal economic analyses and

benefit-cost ratio calculations do not meaningfully account for preexisting property

value disparities across socioeconomic groups. Chapter 3 contributes a novel national

stocktake of the number and value of household vehicles located in US floodplains,

as well as a first analysis of Federal Emergency Management Agency disaster as-

sistance applications and outcomes with respect to vehicle flood damages. Results

suggest vehicle flood risk in the US is wide in scope and large in magnitude, and



Federal government expenditures to support uninsured vehicle flood damages are

substantial. Chapter 4 gathers novel survey data from coastal vehicle owners and

finds robust willingness to pay for a single-peril vehicle flood insurance product, as

well as significant auto insurance literacy gaps which may leave many coastal vehicle

owners financially vulnerable to flood exposure. Conclusions are provided in Chapter

5. Overall, findings from this dissertation provide insight into key household assets’

exposure and vulnerability to climate change-exacerbated flood hazard, and identifies

potential policy avenues to achieve future risk reduction.



This dissertation is dedicated to my family, friends, and all flood-prone communities

pursuing safe and prosperous lives in close proximity to water bodies.
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CHAPTER 1

Introduction

Human settlements and economic activity tend to locate near water due to the es-

sential role water plays in human development (R. Clarke, 2013; Solomon, 2011). Wa-

ter bodies facilitate transportation and provide access to valuable natural resources,

among other economic benefits. However, settlement in close proximity to water

also has the potential to increase flood exposure. Thus, water can function as both

a resource or a hazard depending on context. In the United States (US), approxi-

mately 43 million residents live in areas with a 1% annual exceedance probability of

flood exposure, and shore-adjacent counties contain a disproportionately high share

of US residents and Gross Domestic Product (GDP) relative to land area (Flem-

ing et al., 2018; Wing et al., 2018). These statistics demonstrate a large portion of

US residents and assets are located near water. Correspondingly, the Federal Emer-

gency Management Agency (FEMA) estimates flooding to be the costliest and most

frequently-occurring natural hazard in the US (FEMA, 2019). These realities imply

holistic water management practices simultaneously require the harnessing of water’s

benefits and the mitigation of its destructive potential.

At the same time large concentrations of people and assets are already located

in floodplains, human emissions of heat-trapping gases are causing an unprecedented

rate of global climate change, resulting in a warmer atmosphere, as well as warmer

oceans and land surfaces (IPCC, 2021). Anthropogenic climate change is causing

1
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mean sea levels to rise and more extreme precipitation events to pour down from the

sky, phenomena which are increasing the intensity, frequency, duration, and extent of

flood hazard exposure across significant swathes of land across of the US and globally.

While climate change impacts are expanding and intensifying flood exposure, status

quo urban development patterns are leading to growth of the number of people and as-

sets in extant floodplains (Andreadis et al., 2022; IPCC, 2021; Rentschler et al., 2023;

Wing et al., 2018), a trend described as the “expanding bull’s eye effect” (Strader &

Ashley, 2015). These realities highlight growing flood risks are attributable to both

an intensifying hydrological cycle driven by anthropogenic climate change as well as

human decisions to settle in already-flood-prone areas. Adaptation has the potential

to reduce flood risks arising through these dual drivers, however adaptation progress

to date has generally not been sufficient to fully mitigate climate risks (USGCRP,

2023)

While some studies have estimated historical and projected monetary damages

from flood hazard exposure in macroeconomic terms (Davenport et al., 2021; Desmet

et al., 2021; Downton et al., 2005), this dissertation evaluates US flood exposure

and vulnerabilities through the lens of households’ most valuable tangible assets:

residential property and motor vehicles. How will these widely-owned assets, which

represent a substantial share of the average US household’s net worth, be affected

by the country’s most costly and frequently-occurring natural hazard under climate

change? A key objective of this dissertation is to provide decision-relevant information

to individuals, firms, and policymakers that enables swift, effective, and equitable

flood risk mitigation with respect to the assets most important to US households.

Among the bottom 99% of US households as measured by wealth, equity in pri-

mary residence represents the second-largest1 share of aggregate household wealth of

any asset type, 29% (Eggleston et al., 2020). Thus, residential property is a pivotal

1According to these data, retirement accounts represent the greatest share of US household wealth
of any asset type among this group.
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asset type for US households and the US economy at large. While approximately two-

thirds of US households own their primary residence, roughly nine in ten households

own a motor vehicle, suggesting the US vehicle ownership rate is substantially higher

than the homeownership rate. Though vehicles represent a relatively smaller share

of aggregate household wealth than residential property, vehicles’ relative economic

importance to households is inversely correlated with income. More specifically, vehi-

cles represent a relatively high share of household net worth for relatively low-wealth

households. These statistics broadly indicate flooding threats to housing and vehicle

assets are salient, and warrant persistent study as global greenhouse gas emissions

and associated climate change impacts continue apace. The following dissertation

contributes scholarly and policy-relevant insights about these key household assets’

flood exposure and vulnerabilities to support decisionmaking. Beyond household-level

implications, these chapters also evaluate viable adaptation policy alternatives that

may reduce flood risk and improve welfare.

The following research draws from and integrates concepts, methods, and data

from multiple disciplines, specifically environmental science, environmental economics,

and policy analysis. In particular, policy analysis components of the work rely on

the framing from Weimer and Vining, 2017 of market failures as a potential rationale

for public policy interventions, towards the pursuit of designing and implementing

welfare-enhancing public policies. Two key themes emerge across chapters. First

is the potential value of flood and climate risk information to address the canonical

market failure of imperfect information to support household decision making in ways

that may reduce flood risk. A second major theme that emerges is preexisting dis-

parities in vulnerability, and the potential for Federal disaster and flood mitigation

programs’ design features to influence the distribution of future flood risk. Across

chapters, FEMA and US Army Corps of Engineers (USACE) programs and poli-
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cies are analyzed to understand the ways in which policy design choices may impact

household outcomes vis-à-vis flood hazard.

This dissertation contains three main research chapters. The first, Chapter 2,

contributes to an emerging literature on the projected impacts of anthropogenic sea

level rise (SLR) in coastal housing markets. Specifically, the chapter uses FEMA

and National Oceanic and Atmospheric Administration data products in conjunction

with a triple-differences econometric approach that exploits temporal variation in sci-

entific consensus about global mean SLR to estimate the extent to which projected

SLR exposure erodes coastal property values, if at all. Additionally, the chapter

examines SLR exposure and distributional policy implications using property depre-

ciated replacement value, a policy-relevant property value metric used in USACE’s

Flood Damage Reduction Analysis software and related flood risk management pro-

gram decisions. This chapter’s findings do not provide evidence indicating there is a

SLR exposure price effect in isolation; instead, econometric findings suggest negative

SLR exposure price effects estimated elsewhere in the literature may be attributable

to acute extant flood risk or compositional differences in residential building stock.

Chapter 2’s findings also estimate substantial pre-existing disparities in property value

of considerable magnitude across community indicators of income and race, an insight

with implications for application of benefit-cost analysis design and social welfare ob-

jectives of Federal flood risk management programs.

The second research chapter, Chapter 3, produces novel national estimates of the

number and value of household vehicles exposed to flood hazard in the US. Preferred

estimates suggest approximately 13.1 million household vehicles worth $305 billion are

located in FEMA Special Flood Hazard Areas (SFHA), with approximately 5.2 million

of these vehicles located in census tracts designated by the US Federal government as

“disadvantaged.” Further, this chapter leverages previously-unstudied FEMA disaster

assistance data to comprehensively analyze the extent of Federal disaster assistance
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provided in connection with uninsured vehicle flood damages, as well as program gaps

which may leave certain vehicle owners financially vulnerable to flood hazard. Be-

tween 2007-2022, FEMA received more than 160,000 disaster assistance applications

from applicants reporting vehicle flood damage, and awarded more than $130 mil-

lion to eligible applicants in connection with these uninsured vehicle flood damages.

Policy analysis of FEMA’s Individuals and Households Program and National Flood

Insurance Program also highlights the prominence of private auto insurance markets

as a primary insurance mechanism supporting vehicle owner financial resilience in the

face of flood exposure. Chapter 3 provides evidence that, despite their mobile nature,

vehicle assets experience substantial flood exposure and related damages. Further,

considerable gaps in comprehensive insurance uptake and Federal program support

leave many households financially-vulnerable to uninsured vehicle flood damages.

The final research chapter, Chapter 4, is motivated by findings from Chapter

3. In the absence of granular, peril-specific, publicly-available comprehensive auto

insurance policy or claims data describing uptake rates and incidence of flood dam-

ages, data from 360 vehicle owners in coastal New York and Texas are collected via

a survey instrument to elicit information on the frequency and magnitude of vehi-

cle flood damage experiences, flood insurance literacy, and willingess-to-pay (WTP)

for a hypothetical single-peril vehicle flood insurance product. A contingent valua-

tion approach with double-bounded dichotomous choice question format is used to

estimate WTP. Findings indicate 59% of respondents have experienced “significant”

vehicle flood damage in their lifetimes, and more than one-third of vehicle owners

in the sample report being unaware “comprehensive coverage” is the type of auto

insurance policy that covers vehicle assets from flood damage. Preferred estimates

indicate sample vehicle owners are willing to pay an average of $182.46 per year for

a hypothetical single-peril flood insurance policy for their household’s most valuable

vehicle, with vehicle owners either residing in a FEMA SFHA or exhibiting concern



6

about flooding willing to pay higher prices than the sample-wide average. Overall,

this chapter makes a novel contribution by highlighting vehicle flood damage is a

significant economic issue in coastal areas. Despite robust WTP for flood insurance

coverage, vehicle owners’ knowledge gaps about available insurance coverage may lead

to suboptimal risk management decisions pertaining to this key household asset.



CHAPTER 2

Estimating effects of projected mean sea
level rise exposure on measures of
residential property value: evidence from
the southeastern United States

7
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2.1 Introductory remarks

Global mean sea level rose an estimated 0.2 meters (m) [∼8 inches] between

1901-2018, and global mean sea level rise (GMSLR) over the past century has been

dominated by anthropogenic forcing (Jevrejeva et al., 2009). In recent decades, the

rate of GMSLR has begun to accelerate (IPCC, 2021). In the contiguous United

States (CONUS), the average rate of sea level rise (SLR) this century is expected to

exceed global averages, with a recent United States (US) Federal government interme-

diate projection anticipating a 3.9-foot increase of mean sea level by 2100 relative to

2000 levels (Sweet et al., 2022) and the potential for significantly higher magnitudes

depending on greenhouse gas emissions and ice sheet dynamics (DeConto & Pollard,

2016). By the middle of this century, tens to hundreds of thousands of properties

are projected to be permanently inundated by GMSLR (Hauer et al., 2016; Ohenhen

et al., 2024), suggesting large societal impacts along US coasts.

Tens of billions of dollars’ worth of US real estate is projected to be below mean

higher high water (MHHW) altogether by 2100 under conservative GMSLR projec-

tions, and hundreds of billions of dollars’ worth would be below MHHW under more

extreme scenarios (Murfin & Spiegel, 2020). Nearly 70% of US households own their

home, and home equity comprises a large share of US household wealth, approxi-

mately 29% among the bottom 99% of households by total wealth (Bhutta et al.,

2020). While successful adaptation may have the potential to reduce substantial por-

tions of property damages associated with future GMLSR-intensified coastal flooding

(Fleming et al., 2018; Nicholls & Cazenave, 2010; Yohe et al., 1996), GMSLR appears

poised to impose significant costs on many owners and residents of coastal structures

through more frequent and intense flood exposure and/or increased spending on adap-

tive measures to mitigate flood damages. GMSLR’s non-stationarity, dynamic nature,

and evolving uncertainties (Milly et al., 2008) motivate careful study to inform ef-

fective adaptation to protect human life and property along densely-populated US
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coasts.

In this study, residential property transactions in coastal Florida, Georgia, North

Carolina, and South Carolina are analyzed to investigate whether GMSLR exposure

risk has been negatively capitalized in buyers’ purchases of housing assets. Specifi-

cally, this study examines whether properties on land projected to be below MHHW

under GMSLR scenarios which may occur this century, i.e. in the “SLR-plain,” sell

for a discount relative to comparable properties outside the SLR-plain. The anal-

ysis provides at least three novel contributions to an emerging literature on GM-

SLR exposure risk. First, this study controls for current flood risk and considers

previously-unstudied impacts of a watershed Intergovernmental Panel on Climate

Change (IPCC) report published in 2001. Second, to complement the aforemen-

tioned analysis, this study incorporates an alternative property value metric beyond

transaction price, “depreciated replacement value” (DRV), to estimate whether res-

idential structures’ DRVs vary across SLR-plain status, ceteris paribus. Third, this

analysis examines whether effects of being located in a SLR-plain vary with the racial

composition or income level of the community in which a property is located, as well

as implications for Federal flood mitigation policy.

Section 2.2 describes the background, motivation, and literature review for this

study. Section 2.3 provides an overview of the study area and data used in the

analysis. Section 2.4 details the empirical approach used to estimate effects of SLR-

plain status on measures of residential property value. Section 2.5 presents results of

the empirical analysis. Section 2.6 discusses this study’s results within the context

of relevant literature and highlights avenues for future work. Finally, the article’s

conclusion is in Section 2.7. Additional information may be found in the Appendix.
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2.2 Background and motivation

Markets can facilitate efficient adaptation to climate change through price sig-

nals, though access to current, robust information is important for enabling such

responses (Anderson et al., 2019). According to the IPCC, continued GMSLR this

century is “virtually certain,” however there is still a considerable degree of uncer-

tainty about the precise rate and magnitude of future GMSLR (IPCC, 2021). Effects

of GMSLR are emerging in real time and intersect with existing flood hazards, result-

ing in a complex, evolving set of best-available information on coastal flood hazards

(Buchanan et al., 2016) which may be difficult for the average homebuyer to incor-

porate in their purchasing decisions. Thus, pricing GMSLR risk in housing markets

is an evolving phenomenon and a challenge for individuals concerned about coastal

housing assets and the US coastal economy.

A wide range of empirical research has previously studied various dimensions of

the impacts of potential and actual flood hazard exposure on residential property val-

ues (Atreya et al., 2013; Beltrán et al., 2018; Bin & Kruse, 2006; Bin & Landry, 2013;

Donnelly, 1989; Fell & Kousky, 2015; Gibson & Mullins, 2020; Ortega & Tas.pınar,

2018), including the price effects of being located in a Federal Emergency Manage-

ment Agency (FEMA) flood zone, which have been found to be negative (Hino &

Burke, 2021; Shr & Zipp, 2019).

Complementary to studies on housing and general flood risk, there is a related

and growing literature focused on estimating the price effects of anthropogenic GM-

SLR, a phenomenon projected to impact many coastal areas which already experience

flood risk. While price signals may facilitate efficient adaptation, heterogeneous be-

liefs and preferences have been shown to lead some households to sort into flood-prone

areas (Bakkensen & Ma, 2020). Yohe et al., 2011 further posit that the efficiency of

coastal adaptation solutions depends on decisionmakers’ aversion to risk. Empiri-

cal evidence suggests heterogeneous beliefs and preferences (Bakkensen & Barrage,
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2021) as well as an actuarially-unsound National Flood Insurance Program (NFIP)

(Chivers & Flores, 2002) may lead markets to imperfectly price residential property

assets relative to expected future damages. The existing literature indicates complex

human and physical factors influence pricing of GMSLR exposure risk.

Academic research on the observed price effects of GMSLR is nascent, but ex-

panding. Bernstein et al. (2019) find residential properties projected to be inundated

by MHHW under six feet of SLR sold for approximately 4.4% less than “observably

equivalent” unexposed properties, with properties in nearer-term SLR-plains experi-

encing larger discounts. Bernstein et al.’s conclusions suggest negative SLR exposure

capitalization is largely driven by “sophisticated buyers,” i.e. non-owner occupiers

and condo owners, as well as properties in counties in which “unsophisticated” buyers

exhibit greater worry about climate change. While some national studies find further

evidence of a SLR-plain penalty driven by heterogeneous beliefs about climate change

(Baldauf et al., 2020) and case studies at the sub-state level similarly find negative

price effects (Tarui et al., 2023), a number of studies at national and sub-national

scales estimate price effects of GMSLR exposure that are indistinguishable from zero

(Filippova et al., 2020; Fuerst & Warren-Myers, 2021; Murfin & Spiegel, 2020). In

addition to private residential property markets, recent research also indicates GM-

SLR exposure risk began to be priced in US municipal bond markets starting in 2013

(Goldsmith-Pinkham et al., 2023). Lack of uniform consensus about the price effects

of GMSLR implies there is ample room for additional research to improve our un-

derstanding of the impacts of GMSLR on residential property values as this climate

change impact continues to unfold.

This paper advances the current state of knowledge regarding residential prop-

erty market responses to GMSLR and adaptation implications in three important

ways. First, it adds to the emerging literature on the impacts of GMSLR by esti-

mating price effects of GMSLR exposure using a triple-difference model that controls
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for current storm risk and exploits temporal variation in global scientific consensus

about GMSLR as represented by a watershed IPCC report. Anthropogenic GMSLR

is dynamic, difficult to observe as “turning on” discontinuously, and is a process that

has been ongoing for more than a century. The IPCC’s Third Assessment Report

(AR3), published in 2001, is the first IPCC assessment report that concluded it is

“very likely” anthropogenic warming “...contributed significantly to the observed sea-

level rise” in previous decades (IPCC, 1995, 2001). As a result, AR3’s publication is

used as a temporal delineator after which buyers of coastal property may have taken

this key indicator of global scientific consensus about GMSLR into account when

purchasing coastal properties.2

The second contribution of this paper is to conduct a policy-relevant comparison

of results across two distinct measures of residential property value: 1. transaction

prices and 2. DRV. While a transaction price represents the amount a buyer pays

a seller for the right to all current and future benefits conferred by ownership of

the transferred property, DRV is a distinct measure defined by the the US Army

Corps of Engineers (USACE) as: “. . . the cost of restoring or replacing a property

with something of equivalent value, accounting for physical deterioration and func-

tional obsolescence brought on by age or lack of maintenance” (Cannon et al., 1995).

Thus, DRV is a correlate, but not sole determinant, of transaction price. Scholars

have highlighted DRV metrics contain market and non-market elements, including

“. . . extensive subjective input by the valuer. . . ” which leads this value to be distinct

from market values represented by transaction price (Wyatt, 2009). Transaction

prices may also reflect dimensions of non-structural property value, such as land

value. Importantly, DRVs–not transaction prices– are used by Federal agencies in

benefit-cost analysis (BCA) calculations which influence allocation of Federal flood

2While data describing the pre-2004 period are unavailable, Google Trends data shown in Figure
A.1 indicate the term “sea level rise” was searched with significant frequency from 2004 onward.
While only representing information from Google search users, these data imply there has been
significant awareness of SLR as a phenomenon among this population since the early 2000s.
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mitigation project investments, such as those deployed through USACE Civil Works

Mission works and FEMA Hazard Mitigation Assistance programs (FEMA, 2023c;

USACE, 2000). DRVs play an important role in Federal flood mitigation decisions

and serve as key inputs in the economic analyses which influence the distribution

of flood mitigation project benefits. Improving our understanding of whether DRV

varies according to SLR-plain status or demographic factors may inform future policy

design and the influence of these property value measures on adaptation interventions.

Additionally, contrasting transaction price results with DRV results may inform fu-

ture researchers concerned about GMSLR price effects and adaptation implications

with respect to the most appropriate property value metric(s) to consider in empirical

analyses. This study hypothesizes SLR-plain status should have no effect on struc-

tures’ DRVs, as future costs from flood damage and/or adaptation are not expected

to be explicitly captured by this valuation approach.

The third contribution of this analysis investigates whether there is a meaning-

ful relationship between price effects of GMSLR exposure and the racial or income

profile of a community. While other studies have examined GMSLR discounts across

dimensions of “climate change beliefs” or “buyer sophistication” (Baldauf et al., 2020;

Bernstein et al., 2019), this research makes a contribution by investigating whether

GMSLR exposure of residential property value and price effects thereof vary across

dimensions of community race and income. On average in the United States, low-

income and non-Hispanic Black or African-American (BAA) households have lower

homeownership rates and less housing wealth than the median US household (Bhutta

et al., 2020). Housing wealth and property value disparities across race are in many

cases significantly attributable to individual-level and systemic discrimination (Dar-

ity Jr & Mullen, 2020; Rothstein, 2017), and empirical analysis of the potential for

climate change impacts to exacerbate housing disparities is nascent. Household prop-

erty wealth and property values can be key determinants of infrastructure allocation
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(Junod et al., 2021), therefore housing wealth has implications for where future adap-

tation benefits may accrue. Previous research indicates certain adaptation measures,

such as buyout programs, are more likely to occur in communities of color and/or

low-income communities (Mach et al., 2019; Siders & Keenan, 2020), which raises

procedural and consequentialist justice concerns in flood mitigation and adaptation

policy processes (Paavola & Adger, 2002). This study hypothesizes that properties

in the SLR-plain with more low-income and/or BAA residents will sell for steeper

SLR-plain discounts relative to comparable properties in the SLR-plain with higher

incomes and fewer BAA households. Such a discount, if borne out by the data, may

be due to buyers’ anticipation of disinvestment in climate adaptation infrastructure

in low-income and/or BAA neighborhoods.

2.3 Data description and study area

2.3.1 Zillow ZTRAX data

Individual property transaction data, as well as data describing property-level

characteristics, are sourced from Zillow, Inc.’s Zillow Transaction and Assessment

Database (ZTRAX). This data set has been used widely by empirical researchers (W.

Clarke & Freedman, 2019; Nolte, 2020; Zheng, 2022) and contains more than 374

million detailed public property-level transaction records across more than 2,700 US

counties. In addition to transaction data, ZTRAX contains property-level assessor

information about properties’ specific attributes (e.g., latitude/longitude coordinates,

number of bedrooms) that provide rich detail on a wide range of housing units. Data

from the states of Florida, Georgia, South Carolina, and North Carolina are analyzed

due to the fact the eastern Gulf of Mexico and southeastern US coasts are projected

to experience some of the highest rates of regional relative SLR in the US through

2050 (Sweet et al., 2022).
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In this analysis, the Zillow ZTRAX data are filtered in four key ways. First,

transactions with closing documents indicating sale prices below $50,000 and above

$10,000,000 are excluded from the sample, as the broad center of the property market

distribution is the segment of interest. Second, only properties located within 0.25

miles of the shoreline are included. Third, only property transactions designated

for residential use are included in the sample. Fourth and last, only properties and

property transactions with non-missing information for the variables of interest for

each statistical model have been included (i.e., no data have been imputed or inferred

beyond what is provided in ZTRAX and other data sources described below).

Table 2.1 provides descriptive information about the full sample of ZTRAX

transactions (N= 637,451) after filtering according to the four criteria listed above.

Florida transactions (N=591,991) represent the overwhelming share of observations

in the sample , more than 90%. This is intuitive as Florida has the largest number

of residents residing in areas projected to be inundated by roughly three and six

feet of SLR, respectively (Hauer et al., 2016). Table 2.1 compares sample property

transaction summary statistics according to transacted properties’ six-foot SLR-plain

statuses, while Table 1S shows these summary statistics according to three-foot SLR-

plan statuses. 236,348 (37.1% of) transactions in the sample are projected to be

inundated by MHHW under six feet of SLR and 39,934 property transactions in the

sample (6.3% of all transactions) are projected to be underwater with three feet of

SLR as shown in Table A.1. Approximately 99% of property transactions in the

three-foot SLR-plain and 79% of property transactions in the six-foot SLR-plain are

in a FEMA SFHA. Samplewide, properties in the three-foot and six-foot SLR-plains,

respectively, have higher average transaction prices and smaller building areas than

those outside each SLR-plain.

Figure 2.1 illustrates temporal variation in the sample and shows annual volume

of transactions by state. Figure 2.2 displays the 236,348 property transactions in the
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sample that are in the projected six-foot SLR-plain, while Figure A.2 in the Appendix

displays the 401,103 property transactions that are outside the six-foot SLR-plain.

Figure 2.1: Annual transactions by state (total N=637,451)
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2.3.2 USACE National Structure Inventory data

In addition to Zillow’s ZTRAX database, the 2022 USACE National Structure

Inventory (NSI) is used. This database contains information on structure DRV, an

alternative measure of property value that contrasts with transaction price. The data

are compiled and maintained by the USACE, and the inventory serves as a reposi-

tory for information about both residential and commercial structures. NSI data for

residential structures in Florida, Georgia, North Carolina, and South Carolina that

are within 0.25 miles of the shoreline are included, and summary statistics for struc-

tures included in the sample are shown below. The NSI data were further filtered

to exclude structures with fewer than 100 square feet and more than 111 stories.



17

Figure 2.2: Sample transactions exposed to six feet of SLR (total N=236,348)

These filters were applied to remove records with erroneous values and/or those cor-

responding to very small structures. Additionally, all observations containing DRVs

of less than $6,000 and more than $10,000,000 were excluded. Table 2.2 below shows

summary statistics for relevant NSI variables included in the analysis according to

six-foot SLR-plain status. Table A.2 shows these summary statistics according to

three-foot SLR-plain status. In the full sample of residential coastal NSI structures

in Florida, Georgia, North Carolina, and South Carolina, 497,687 structures with ag-

gregate DRV of $115.5 billion (priced in 2021 US dollars) are located in the six-foot

SLR-plain. More than four in five of these structures are located in Florida. 81,418

structures with aggregate DRV of $18 billion are located in the three-foot SLR-plain.
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2.3.3 SLR data

SLR scenarios produced by the National Oceanic and Atmospheric Adminis-

tration (NOAA) are employed to determine which properties and structures are in

the SLR-plain and “exposed” to GMSLR, i.e. projected to be below MHHW under

three feet and six feet of mean SLR, respectively, relative to a baseline of the current

National Tidal Datum Epoch. These projections are a credible tool produced collab-

oratively between multiple US Federal agencies. The product includes a disclaimer

noting projections do not account for erosion nor subsidence, and also may not cap-

ture detailed local hydrologic or hydraulic features (NOAA, 2020; Sweet et al., 2022).

However, these projections are still recommended for use for planning purposes and

have been frequently employed as a proxy for future exposure to anthropogenic SLR

in academic research (Bernstein et al., 2019; McAlpine & Porter, 2018; Murfin &

Spiegel, 2020). This paper explores the price effects of exposure to three feet (0.9m)

and six feet (1.8m) of SLR, respectively, because comparison of these distinct SLR

magnitudes accounts for the continuous nature of GMSLR risk and the differing time

horizons on which impacts of different magnitudes of GMSLR may occur (Pistrika

et al., 2014). Observed price effects are interpreted to be the present value of expected

future damages and/or expected adaptation costs driven by anthropogenic GMSLR.

2.3.4 Other geographic data

Variables for properties’ elevations above vertical datum North American Ver-

tical Datum 1988 (NAVD88) are also constructed using the US Geological Survey’s

The National Map – Elevation Point Query Service (USGS, 2022). In addition to el-

evation, transacted properties’ distances to the nearest shoreline are calculated using

NOAA’s National Shoreline Data, specifically the “NOAA Medium Shoreline” data

set. The NOAA Medium Shoreline data set represents more than 75,000 nautical

miles of coastline covering CONUS (NOAA, 2016). Last, FEMA’s National Flood
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Hazard Layer (NFHL) is used to determine properties’ SFHA statuses based on maps

downloaded from FEMA’s website in March 2023 (FEMA, 2023e). As shown in Tables

2.1 and 2.2, SLR-plain status and SFHA status are highly correlated, but SLR-plain

status does not perfectly predict SFHA status and vice versa. Tables A.1 and A.2

show large majorities of transacted properties and structures in the three-foot SLR-

plain are also in SFHAs. Figure 2.3 illustrates transacted properties in a section of

Miami, FL near the mouth of the Miami River according to their six-foot SLR-plain

and FEMA SFHA statuses.

Figure 2.3: Illustrative transactions in Miami, FL based on SFHA and six-foot SLR-plain status
(N=6,564) [triangle symbol denotes transacted property]
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2.4 Empirical approach

A primary goal of this analysis is to develop unbiased, reliable parameter esti-

mates for the price effects of residential property exposure to three and six feet of

future anthropogenic SLR in the southeastern US during the sample period 1993-

2022 using property transaction prices as the response variable of interest. A hedonic

model with comprehensive fixed effects taking into account property-level character-

istics, as well as spatial and temporal fixed effects, is used to isolate price effects of

being located in projected SLR-plains. Hedonic property value analysis has been ap-

plied in a wide variety of settings to estimate the value of environmental disamenities

(K. Bishop et al., 2020), including flood hazard risk (Bin & Polasky, 2004; Kousky,

2010). In a main specification, a triple-difference estimator (Olden & Møen, 2022)

is employed to disentangle confounding effects of existing storm risk as proxied by

FEMA SFHA status and to identify the effects of GMSLR exposure in isolation, which

are hypothesized to emerge in the post-AR3 period. The triple-difference estimator

is an approach which has been applied in the environmental hedonic property value

literature (Muehlenbachs et al., 2015).

Below is the main econometric model representing a framework which generates

core results. The identification strategy to isolate the price effect of being located

in a SLR-plain on residential properties relies on control covariates (property age,

building square footage, and SFHA status) and a comprehensive set of interacted

fixed effects (transaction year, distance to coast, elevation, property zip code, condo-

minium status, and number of bedrooms) to plausibly compare properties that are

observably equivalent except for their status regarding exposure to future GMSLR.

The mechanism through which we might expect to see a discount emerge is buyer

consideration of climate risk about properties’ anticipated GMSLR exposure status

following AR3’s publication, which might then lead to subsequent negative capital-

ization due to expected future losses or adaptation costs attributable to GMSLR.
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A brief explanation of the terms in the main specification, shown in Equation

(2.1), follows and aligns with presentation and derivation of the triple-difference es-

timator from Olden and Møen (2022). A more detailed description may be found in

Section A.1 of the Appendix. The dependent variable is the natural log of the final

transaction price ($) for property transaction i in year Y. The variable “Exposure” is

a dummy variable that takes on a value of 1 if the property in transaction i is exposed

to SLR of magnitude m, where m takes on a value of three or six feet. A property is

categorized as “exposed” if its latitude and longitude coordinates fall within NOAA’s

projected layer of inundation below MHHW under corresponding SLR magnitude m.

The variable “IPCC” is a dummy variable taking on a value of zero for transactions

taking place in 2001 and preceding years, and one in years thereafter. Thus, in this

specification, it is most intuitive to view properties in the SLR-plain for magnitude m

as the treatment group and those outside the SLR-plain as the control group, with the

“pre-period” occurring in 2001 and before, and “post-period” occurring after 2001.

Ln(price)i,Y = β0 + β1Exposurem,i + β2IPCCY + β3SFHAi+

β4(IPCCY ∗ Exposurem,i) + β5(SFHAi ∗ Exposurem,i) + β6(IPCCY ∗ SFHAi)+

β7(IPCCY ∗ Exposurem,i ∗ SFHAi) + β8Agei,Y + β9SFi + λBR,CN,D,E,Y,Z + ǫi,Y

(2.1)

“Age” and “SF” represent property age and building square footage. The λ term

represents the unique slopes for the interaction of fixed effects, including number of

bedrooms in the property, “BR;” whether or not a property is a condominium, “CN;”

distance to shoreline, “D;” elevation above NAVD88, “E;” year of transaction,“Y;”

and zip code in which the property is located, “Z.” For both distance to coast, “D,”

and elevation, “E,” values are binned to produce categorical variables to ease com-

putational burden. In the case of elevation, the categorical variable contains five

six-foot bins and in the case of distance to shore, the categorical variable contains six
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bins. “SFHA” is a dummy variable indicating whether the property’s latitude and

longitude coordinates are located in one of FEMA’s SFHAs. The combination of co-

variates and interacted fixed effects help mitigate selection problems and account for

compositional differences between groups across SFHA and SLR-plain status (Olden

Møen, 2022). Figures A.5 to A.9 in the Appendix provide more detail about parallel

trends assumptions for difference-in-differences and triple-difference estimations. A

key distinguishing characteristic of this study’s approach is the interaction between

“SFHA” and “Exposure” which has been included to understand potential interac-

tive effects between these two correlated variables and to explore whether emergence

of GMSLR price effects depends on SFHA status. This study hypothesizes that a

statistically significant negative parameter estimate for β4 or β7 would be suggestive

of a negative GMSLR exposure price effect emerging post-AR3 among properties in

the SLR-plain.

2.5 Results

2.5.1 Main results and estimated IPCC AR3 price effects

Table 2.3 contains results from model estimations employing Equation (2.1),

with sets of results corresponding to three feet and six feet of SLR, respectively.

Each of the estimations contains interacted fixed effects for number of bedrooms,

condominium status, distance to coast, elevation, zip code, and transaction year as

well as covariates controlling for property age, building square footage, and SFHA

status. Across model results shown in Table 2.3, property age is negatively correlated

with transaction price at the 1% significance level, and building square footage is

positively correlated with transaction price at the 1% significance level.

While naive specifications shown in columns 1a, 1b, 2a, and 2b show negative and

significant (p<0.05) parameter estimates for being located in the three-foot and six-
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foot SLR-plains, respectively, incorporation of interaction terms with FEMA SFHA

status in columns 1c, 1d, 2c, and 2d call into question whether GMSLR exposure

alone is truly a mechanism causing negative capitalization in the sample observations.

Columns 1a and 2a, respectively, estimate baseline results that properties in the

three-foot and six-foot SLR-plains sold for -4.5% (-8.0% to -0.9%, 95% confidence

interval [CI]) and -5.2% (-7.5% to -2.7%, 95% CI) relative to comparable properties

outside the SLR-plain over the sample period. However, these parameter estimates

are indistinguishable from zero as shown in columns 1c and 2c when incorporating

an interaction term with SFHA status to investigate whether being located in both

a SFHA and SLR-plain is associated with additional negative capitalization.

Further, estimates of β4 and β7 in Table 2.3 columns 1b, 1d, 2b, and 2d do not

suggest a negative GMSLR exposure price effect emerged discontinuously following

the release of IPCC’s AR3 in 2001. Contrary to hypothesized results, estimates for

β4 in columns 1b and 2b imply the presence of negative price effects of being located

in the three-foot and six-foot SLR-plains before publication of IPCC’s AR3, with

this effect attenuating toward zero in the post-AR3 period. It is unlikely coastal

home buyers in the pre-AR3 period would price GMSLR risk given limited scientific

consensus and public awareness about observed impacts of GMSLR at the time.

Rather than a negative price effect post-AR3, a positive post-AR3 price effect is

observed in the specification shown in column 1b along with no discernible post-AR3

price effect in column 2b.

When considering the preferred triple-difference estimations in columns 1d and

2d, statistically significant (p<0.05) and negative β5 estimates indicate across the

sample period negative price effects of SLR-plain status are only observed when prop-

erties are also located in a SFHA. Results in column 1d indicate properties in both

the SFHA and three-foot SLR-plain sold, on average, for -5.1% (-9.4% to -0.7%, 95%

CI) relative to observably equivalent properties neither in a SFHA nor the SLR-plain
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across the sample period. Properties in both the SFHA and three-foot SLR-plain sold

for -13.0% (-27.9% to +2.0%, 95% CI) compared to observably equivalent properties

only in the three-foot SLR-plain (not in a SFHA). Similarly, properties in both the

SFHA and three-foot SLR-plain sold for -8.7% (-12.6% to -4.8%, 95% CI) compared

to otherwise observably equivalent properties only in a SFHA (not in the three-foot

SLR-plain). Estimates in column 2d further suggest properties in both the six-foot

SLR-plain and a SFHA sold for -7.5% (-11.5% to -3.3%, 95% CI) compared to observ-

ably equivalent properties only in a SFHA. These interactive effects suggest negative

price effects are only present in the portions of SFHAs which are most acutely vul-

nerable to GMSLR, and neither being located in the SLR-plain nor a SFHA alone is

associated with a price discount.

Due to the highly-correlated nature of existing storm risk and GMSLR exposure,

and parameter estimates for β4 and β7 that are statistically indistinguishable from

zero across specifications, there is insufficient evidence to infer the existence of a post-

AR3 negative price effect solely attributable to GMSLR exposure. Since β5 estimates

reflect the interactive price effect of being in both a SFHA and the SLR-plain across

the sample period, with no estimated change following AR3, it is possible acute ex-

tant flood risk as represented by FEMA flood maps may in fact be the mechanism

driving observed negative price effects in other studies in the literature, as opposed to

perceived climate risk in the form of future GMSLR exposure. For example, FEMA’s

SFHA “V” designation corresponds to “coastal high hazard flooding,” which is char-

acterized by higher and more damaging potential wave action than other SFHAs,

such as Zone A (FEMA, 2023a).

Figure 2.4 depicts the estimated price effects of GMSLR on coastal property

transactions and presents estimates from the specification shown in Table 2.3 col-

umn 1b, with slight modification that interacts “Exposure” with each year with 2001

as the illustrative baseline year. These estimates provide visual evidence further
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suggesting no discernible price effect of GMSLR exposure emerged following publi-

cation of AR3 in 2001. In the Appendix, this study also provides novel estimates

of GMSLR exposure price effects across community race and income. While results

do not suggest there is a SLR exposure price effect, let alone one that meaningfully

varies with community race or income, these estimates overwhelmingly find coastal

properties—including those in the SLR-plain— tend to sell for less in census tracts

with larger BAA populations and lower-income census tracts relative to otherwise

observably equivalent properties. On average, a 10% increase in a census tract’s

BAA population share is associated with a -4.3% (-6.5% to -2.0%, 95% CI) change in

transaction price, holding other observed factors constant. Further, a 10% increase in

census tract median household income corresponds to an approximate 2.9% (2.4% to

3.4%, 95% CI) increase in transaction price, holding other observed factors constant.

Similar findings are observed when restricting the samples to only SLR-exposed prop-

erties. These findings highlight the existence of preexisting property value disparities

of considerable magnitude across community income and race in areas exposed to

GMSLR.
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Figure 2.4: Estimated price effects of exposure to three feet of sea level rise by year (reference
year: 2001)
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Table 2.1: Summary statistics, property transactions, 1993-2022

Inside six-foot SLR-plain Outside six-foot SLR-plain

N Mean St. Dev. N Mean St. Dev.
Sales price ($, thousands)
Florida 224,141 444.5 642.9 367,850 360.3 548.6
Georgia 2,176 394.7 274.0 4,462 318.0 263.0
North Carolina 9,410 412.0 555.0 27,866 400.0 493.6
South Carolina 621 512.5 425.5 925 342.9 449.1
Total 236,348 446.6 636.8 401,103 358.7 539.8

# of bedrooms
Florida 224,141 2.6 1.0 367,850 2.8 0.9
Georgia 2,176 3.1 0.9 4,462 3.0 0.8
North Carolina 9,410 3.3 1.1 27,866 3.3 1.3
South Carolina 621 2.9 1.4 925 2.5 1.1
Total 236,348 2.6 1.0 401,103 2.8 1.0

Building area sq. ft.
Florida 224,141 1,799 1,119 367,850 1,900 1,076
Georgia 2,176 2,035 948 4,462 1,999 915
North Carolina 9,410 2,248 909 27,866 1,929 1,031
South Carolina 621 621 1,933 925 1,802 1,293
Total 236,348 1,820 1,131 401,103 1,894 1,091

Distance to shore (ft.)
Florida 224,141 350.2 325.6 367,850 577.7 380.4
Georgia 2,176 660.2 382.2 4,462 793.0
North Carolina 9,410 470.7 357.0 27,866 677.5 368.3
South Carolina 621 543.6 365.8 925 626.2 362.2
Total 236,348 361.1 331.4 401,103 583.7 379.9

Elevation (ft.)
Florida 224,141 5.5 1.5 367,850 11.6 11.5
Georgia 2,176 6.7 2.5 4,462 31.4 48.9
North Carolina 9,410 4.6 2.6 27,866 13.0 7.5
South Carolina 621 6.1 3.0 925 14.4 10.9
Total 236,348 5.5 1.6 401,103 12.1 12.7

Property age (years)
Florida 224,141 28.9 21.3 367,850 27.0 21.2
Georgia 2,176 29.7 22.9 4,462 37.0 33.1
North Carolina 9,410 21.2 18.7 27,866 28.1 19.6
South Carolina 621 27.3 22.0 925 21.8 17.8
Total 236,348 28.6 21.4 401,103 26.7 21.2

Special Flood Hazard Area status
Florida 224,141 0.78 0.41 367,850 0.24 0.43
Georgia 2,176 0.93 0.26 4,462 0.06 0.24
North Carolina 9,410 0.66 0.47 27,866 0.20 0.4
South Carolina 621 0.91 0.28 925 0.25 0.43
Total 236,348 0.79 0.41 401,103 0.24 0.43
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Table 2.2: National Structure Inventory summary statistics, 2022

Inside six-foot SLR-plain Outside six-foot SLR-plain

N Mean St. Dev. N Mean St. Dev.
Structure value ($, thousands)
Florida 416,513 229.9 339.1 616,398 221.6 292.8
Georgia 7,987 283.0 277.6 13,657 280.4 390.5
North Carolina 43,355 187.3 172.1 88,348 212.5 318.3
South Carolina 29,832 315.0 302.5 43,617 342.7 530.8
Total 497,687 232.1 325.8 761,930 228.5 317.5

Distance to shore (ft.)
Florida 416,513 340.3 325.4 616,398 599.7 384.0
Georgia 7,987 658.0 387.6 13,567 762.6 365.0
North Carolina 43,355 415.3 341.4 88,348 629.7 380.2
South Carolina 29,832 589.5 376.0 43,617 738.3 364.7
Total 497,687 366.9 338.8 761,930 614.0 384.1

Building area sq. ft.
Florida 416,513 2,142 3,404 616,398 2,109 2,737
Georgia 7,987 2,676 2,737 13,567 2,598 3,177
North Carolina 43,355 1,965 2,528 88,348 2,173 2,627
South Carolina 29,832 2,659 2,386 43,617 3,025 4,164
Total 497,687 2,166 3,277 761,930 2,178 2,843

Elevation (ft.)
Florida 416,513 4.3 2.0 616,398 11.7 7.5
Georgia 7,987 6.4 2.4 13,567 32.4 51.4
North Carolina 43,355 4.4 1.6 88,348 14.1 7.4
South Carolina 29,832 6.8 1.7 43,617 17.3 20.8
Total 497,687 4.4 2.1 761,930 12.7 11.5

Number of stories
Florida 416,513 1.26 0.90 616,398 1.24 0.76
Georgia 7,987 1.49 1.14 13,567 1.48 1.23
North Carolina 43,355 1.40 0.82 88,348 1.59 0.99
South Carolina 29,832 1.58 0.82 43,617 1.59 0.99
Total 497,687 1.30 0.90 761,930 1.28 0.80

Special Flood Hazard Area status
Florida 416,513 0.61 0.49 616,398 0.19 0.40
Georgia 7,987 0.91 0.28 13,567 0.20 0.40
North Carolina 43,355 0.79 0.41 88,348 0.07 0.25
South Carolina 29,832 0.73 0.44 43,617 0.20 0.40
Total 497,687 0.64 0.48 761,930 0.13 0.34
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Table 2.3: Baseline results and estimated IPCC price effects, 1993-2022

Dependent variable: Ln(Price) [$]
Column: (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
SLR Exposure (three feet) -0.046** -0.081*** 0.058 0.079 – – – –

(0.019) (0.019) (0.086) (0.046)
SLR Exposure (six feet) – – – – -0.053*** -0.058*** -0.015 -0.022

(0.013) (0.017) (0.016) (0.016)
SFHA dummy 0.021 0.021 0.22 0.037*** 0.036* 0.036* 0.057*** 0.067***

(0.014) (0.014) (0.014) (0.014) (0.015) (0.015) (0.014) (0.019)
SFHA dummy x SLR Exposure (three feet) – – -0.106 -0.167** – – – –

(0.089) (0.076)
SFHA dummy x SLR Exposure (six feet) – – – – – – -0.058**** -0.056**

(0.020) (0.025)
SLR Exposure (three feet) x IPCC dummy – 0.051** – -0.031 – – – –

(0.023) (0.156)
SLR Exposure (six feet) x IPCC dummy – – – – – 0.007 – 0.010

(0.014) (0.018)
SFHA dummy x IPCC dummy – – – -0.020 – – – -0.014

(0.014) (0.018)
SLR Exposure (three feet) x IPCC x SFHA – – – 0.087 – – – –

(0.158)
SLR Exposure (six feet) x IPCC x SFHA – – – – – – – -0.002

(0.023)
Property age -0.0019*** -0.0018*** -0.0019*** -0.0018*** -0.0018*** -0.0018*** -0.0018*** -0.0018***

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)
Property sq. ft. 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003***

(8.4x10−6) (8.4x10−6) (8.4x10−6) (8.4x10−6) (8.3x10−6) (8.3x10−6) (8.3x10−6) (8.5x10−6)
Fixed effects
BR*CN*D*E*Y*Z Yes Yes Yes Yes Yes Yes Yes Yes
# of fixed effects 161,182 161,182 161,182 161,182 161,182 161,182 161,182 161,182
Fit statistics
Observations 637,451 637,451 637,451 637,451 637,451 637,451 637,451 637,451
Adj. R2 0.815288 0.814312 0.815297 0.815329 0.815499 0.81550 0.815599 0.815602

Significance codes: ***:0.01; **:.05, *:0.1. Standard errors in parentheses and clustered at the zip code level.
Note: Abbreviation/acronym definitions: “SLR” = sea level rise; “sq. ft” = square feet; “IPCC” = Intergovernmental Panel on Climate Change Third Assessment Report; “CN” = condominium
dummy; “Z” = zip code; “Y” = transaction year; “SFHA” = Special Flood Hazard Area. Note: the “distance to coast” variable is categorical with five categories. All observations with elevations of 6
feet or less take on a value of 1, all observations with elevations from 6-12 feet take on a value of 2, etc., and all observations with elevations greater than 24 feet take on a value of 5. The “elevation”
variable is categorical with six categories. All observations with distance to shore values of 0-53 feet take on a value of 1; 54-106 feet a value of 2; 107-211 a value of 3; 212-422 a value of 4; 423-845 feet
a value of 5; greater than 845 feet a value of 6.
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2.5.2 NSI results

Table 2.4 presents results from a modified version of model specification shown in

Equation (2.1) using cross-sectional NSI data and describes a similar regression model

as shown in the previous section with property value metric as the dependent variable,

except without temporal variation. These estimates use a similar, but slightly dif-

ferent, suite of detailed structure-level characteristics sourced from the USACE NSI

described in the table footnote. The dependent variable in Table 2.4’s estimations

is DRV, not transaction price. Contrary to the initial hypothesis, estimation results

shown in Table 2.4 column 1d suggest an average effect of -3.2% (-5.5% to -1.1%,

95% CI) on DRV for being located in the three-foot SLR-plain. However, results

shown in column 2d indicate a precisely-estimated null effect for being located in the

six-foot SLR-plain. This finding suggests structures at risk of permanent inundation

by three feet of SLR in the southeastern US are valued less by the USACE than ob-

servably equivalent structures outside the three-foot SLR-plain. This result implies

there could be compositional differences in housing stock quality across three-foot

SLR-plain status, which could perhaps explain estimates of negative SLR exposure

price effects found elsewhere in the literature. If structures in the three-foot SLR-

plain are of poorer quality and/or valued less by assessors than other structures for

other reasons, then this could imply existence of an unobserved factor inherent to the

building stock in the three-foot SLR-plain that is positively correlated with SLR-plain

status and negatively correlated with property value.

Section A.1 of the Appendix extends this line of inquiry by analyzing results

across census tract income and demographics. This analysis finds a 10% increase

in census tract BAA population share is associated with a -3.8% (-4.8% to -2.9%,

95% CI) change in DRV, while a 10% increase in census tract median income is

associated with a 2.4% (2.7% to 2.1%, 95% CI) increase in DRV. Similar to the

above, these results have implications for adaptation policy due to the fact USACE
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NSI DRV values are commonly used in decision criteria, such as benefit-cost ratios,

for allocation of Federal flood mitigation measures. Therefore, disparities in DRV

across socioeconomic groups may influence the distribution of Federal flood mitigation

project funding and related equity objectives.

2.6 Discussion

2.6.1 Contextualizing empirical results

A number of this study’s empirical results do not align with hypotheses which

guided the research ex ante, nor other findings in the literature. While the above

results do estimate negative price effects of being located in the three- and six-foot

SLR-plains under some naive baseline specifications within a few percentage points

of other studies’ estimates (Baldauf et al., 2020; Bernstein et al., 2019; Tarui et al.,

2023), incorporating additional covariates—notably properties’ FEMA SFHA status

according to a recent version of FEMA’s NFHL—into a specification with an intuitive

functional form suggests a GMSLR exposure discount did not emerge in the coastal

residential property market in the southeastern US following publication of the IPCC’s

AR3. It is perhaps unsurprising that FEMA flood zone status and SLR-plain status

are highly correlated, notably among transactions in the three-foot SLR-plain, and

that estimates are sensitive to inclusion of FEMA flood zone data. Despite the salience

of FEMA flood maps and their highly-correlated relationship with SLR-plain status,

some studies which estimate non-zero effects of GMSLR exposure do not include

controls for FEMA flood zone status (Baldauf et al., 2020; Bernstein et al., 2019, 2022)

and instead include other variables (e.g., NOAA storm surge simulations) which aim

to noisily control for current or shorter-term flood risk. Other studies have focused

more squarely on existing flood risks and exploited temporal variation in FEMA

flood map updates to estimate the price effects of residential properties mapped into
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Table 2.4: National Structure Inventory regression results

Dependent variable: Ln(Depreciated replacement value) [$]
Column: (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
SLR magnitude: 3 ft. 3 ft. 3 ft. 3 ft. 6 ft. 6 ft. 6 ft. 6 ft.
SLR exposure -0.141*** -0.114*** -0.080 -0.033*** -0.010*** 0.025*** 0.017 0.006

(0.005) (0.005) (0.042) (0.012) (0.001) (0.001) (0.012) (0.007)
SFHA dummy 0.036*** 0.024*** 0.014 -0.006 0.042*** 0.062*** 0.054*** -0.001

(0.001) (0.001) (0.011) (0.007) (0.001) (0.001) (0.017) (0.009)
SFHA dummy x 0.004 -0.006 -0.023 -0.012 -0.133*** -0.094*** -0.094*** -0.017*
SLR exposure (0.006) (0.006) (0.048) (0.014) (0.003) (0.002) (0.017) (0.009)
Structure sq. ft. – 1.1x10−4*** 1.0x10−4*** 1.8x10−4*** – 1.1x10−4*** 1.1x10−4*** 1.8x10−4***

(3.3x10−6) (8.4x10−6) (9.3x10−6) (3.3x10−6) (8.4x10−6) (9.4x10−6)
Fixed effects
Z No No Yes No No No Yes No
BT**D*E*OT*Z No No No Yes No No No Yes
# of fixed effects 0 0 675 103,465 0 0 675 103,465
Fit statistics
Observations 1,259,617 1,259,617 1,238,640 1,238,640 1,259,617 1,259,617 1,238,640 1,238,640
Adj. R2 0.003091 0.296701 0.442215 0.853183 0.002552 0.295747 0.442042 0.853027

Significance codes: ***:0.01; **:.05, *:0.1. Standard errors in parentheses and clustered at the zip code level when “Z” fixed effects included. Otherwise, standard errors are heteroskedasticity-robust using White
correction.
Note: Abbreviation/acronym definitions: “SLR” = sea level rise; “sq. ft” = square feet; “Z” = zip code; “OT” = occupancy type; “BT” = building type; “S” = number of stories; “SFHA” = Special
Flood Hazard Area. Note: the “distance to coast” variable is categorical with five categories. All observations with elevations of 6 feet or less take on a value of 1, all observations with elevations from
6-12 feet take on a value of 2, etc., and all observations with elevations greater than 24 feet take on a value of 5. The “elevation” variable is categorical with six categories. All observations with
distance to shore values of 0-53 feet take on a value of 1; 54-106 feet a value of 2; 107-211 a value of 3; 212-422 a value of 4; 423-845 feet a value of 5; greater than 845 feet a value of 6. “Building type”
represents the primary material associated with exterior walls and structure stability functions; values include wood, steel, masonry, manufactured, and concrete. “Occupancy type” may take on one of
nineteen distinct categorical values, each of which corresponds to a different residential designation based on the number of units and stories in a residential structure.
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a FEMA SFHA (Gourevitch et al., 2023; Hino & Burke, 2021; Shr & Zipp, 2019).

Within the climate risk literature, still some studies have controlled for FEMA SFHA

status in their hedonic models estimating GMSLR price effects, though temporal

variation in FEMA flood zone designations is either excluded or unspecified (Murfin

& Spiegel, 2020; Tarui et al., 2023).

The employed methodology highlights the importance and sensitivities of con-

trolling for FEMA flood zone status in estimates of GMSLR price effects, as well as

the difficulty of estimating the price effects of climate change impacts in isolation

using hedonic approaches. Indeed, previous stated preferences research on the US

Gulf Coast region finds GMSLR is a “temporally distant” concern for residents and

FEMA flood maps are a salient risk communication tool (Shao et al., 2020). How-

ever, FEMA flood maps are known to have shortcomings with respect to representing

actual potential flood exposure, with multiple studies highlighting the fact that al-

ternative flood models provide different representations of flood risk (Noonan et al.,

2022; Wing et al., 2018). This underscores the importance of credible, accurate data

underlying both existing hydrologic and hydraulic processes, as well as projected fu-

ture ones, when estimating GMSLR price effects.

Further, differing results across measures of residential property value highlight

the importance of selecting the appropriate property value metric in alignment with

objectives of the analysis at hand. This study’s findings compare and contrast results

across different measures of “property value,” which are generated from different valu-

ation processes. An analyst’s decision to select, for example, transaction price instead

of DRV in statistical or policy analysis may significantly affect inference and/or pro-

gram outcomes. Thus, this study contributes to a growing literature by incorporating

a unique empirical design that distinguishes between GMSLR exposure and extant

flood risk, as well as an analytical component focused on multiple policy-relevant

measures of residential property value with implications for Federal flood mitigation.
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If price effects of GMSLR exposure in the southeastern US are, indeed, null as

this study’s results estimate, at least two possible phenomena may explain such find-

ings. First, a property’s latitude and longitude coordinates falling within a NOAA

projection of future SLR inundation does not mean flood damage is a foregone con-

clusion; adaptive actions can be, and often are, taken to reduce vulnerability and

mitigate effects of anticipated flooding (Fell & Kousky, 2015; Jin et al., 2015; Kelly

& Molina, 2023; Kim, 2020; Walsh et al., 2019). Thus, awareness and concern about

future sea level rise may catalyze adaptative actions which protect vulnerable exposed

areas, preserve residential property values, and stave off negative price effects.

Second, lack of awareness or belief heterogeneity have the potential to lead to a

null effect of SLR-plain status. Previous empirical studies have found lack of access to

information about potential flood exposure inflates transaction prices in flood-prone

areas above fundamentals (Gourevitch et al., 2023; Hino & Burke, 2021), while related

research indicates residents with relatively little concern about flooding and strong

preferences for coastal living sort into areas prone to coastal flooding (Bakkensen &

Barrage, 2021). Similarly, beliefs and levels of concern appear to influence GMSLR

risk capitalization, with negative price effects primarily emerging in areas where buy-

ers are more concerned about climate change (Baldauf et al., 2020; Bernstein et al.,

2019). Thus, it is possible levels of concern or awareness about GMSLR among buyers

in this study area do not rise to levels that would lead to meaningful price effects,

highlighting the key distinction between objective risk and subjective risk perceptions

in hedonic analysis.

2.6.2 Policy implications

As previously noted, property value is a key input when considering where and

when to invest limited funds for flood mitigation measures (Junod et al., 2021).

Across Federal agencies– notably USACE and FEMA which are the primary agencies
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through which Federal funds flow for flood risk reduction projects– BCA is an integral

analytical component conducted during the project planning phase (Miller et al.,

2023). Across programs in both agencies, projects rarely advance if they do not meet

a benefit-cost ratio (BCR) of 1.0 or nearly 1.0 on the grounds of economic justifiability.

The above NSI results highlight preexisting disparities in the value of residen-

tial property across communities, with lower-income communities and communities

with larger BAA populations exhibiting relatively lower DRVs on average. Avoided

damages to structures’ unweighted DRV is a primary economic benefit considered

in the USACE Hydrologic Engineering Center’s Flood Damage Reduction Analysis

(HEC-FDA) software, the main tool used to conduct economic analyses and calcu-

late project BCRs during formulation of Corps flood risk management plans (USACE,

2016). These plans include SLR adjustments and consider costs across a 50-year eco-

nomic period of analysis (Durden & Fredericks, 2009). Similarly, residential structure

DRV is a main input in the avoided “physical damage” category of FEMA’s Hazard

Mitigation Assistance BCA tool and recommended approach (FEMA, 2023b). In the

case of FEMA HMA programs, for example, recent scholarship indicates the BCR

effectively functions as an eligibility criterion, and is one of many factors considered

during the selection phase among eligible HMA project submissions (Miller et al.,

2023). In the case of the USACE’s comparison of flood risk management plans and

ultimate selection of alternatives, BCR is similarly one of multiple factors considered

during projection selection, and in some cases high BCR has been cited as justifica-

tion for project selection (USACE, 2022b). These policy realities underscore the fact

that relatively lower DRVs in communities with lower incomes and/or higher BAA

population shares are likely to lead to lower BCR calculations, which has implications

for project alternatives’ eligibility and/or salience of perceived project economic ben-

efits during the selection stage. Among economically-justifiable project alternatives,

considerations of both economic efficiency and equity must still be balanced.
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The Justice40 Initiative brought into effect by Executive Order 14008 represents

a significant Federal policy shift, operationalizing the goal to direct “40 percent of

the overall benefits” of certain Federal investments to disadvantaged communities, in-

cluding FEMA HMA programs and USACE’s Flood Risk Management Program (The

White House, 2021). Current Office of Management and Budget (OMB) guidance and

agency implementation leads to somewhat coarse calculations of the distribution of

these benefits by determining the share of invested dollars flowing to census tracts

defined by the White House’s Climate and Economic Justice Screening Tool (CE-

JST) as “disadvantaged” (US OMB, 2023; US Army, 2022). This current approach

appears to resemble an accounting of the distribution of Federal investment rather

than benefits.

Adler, 2016 argues equating unweighted monetary values (e.g., avoided damages

to residential structure DRV) with “benefits” espouses implicit moral values, as each

marginal dollar of investment or avoided damage does not necessarily provide the

same amount of utility or personal benefit to individuals within a community or com-

munities experiencing significant wealth inequality. Though incompatible with agency

policies, Adler posits society may prefer to apply an underlying “social welfare func-

tion” in BCA approaches which, for example, might include an inequality aversion

parameter or income-weighted calculation of benefits to prioritize mitigation of pre-

existing disparities as a substitute or complement to Kaldor-Hicks efficiency criteria.

When acknowledging property value disparities across socioeconomic groups, both

the metric used to quantify “benefits” and the entry point of equity considerations

in the project evaluation and selection process seem likely to influence adaptation

outcomes. Communities with lower average DRVs may have more difficulty securing

Federal investment or meeting eligibility requirements to even be considered for such

funding when submitting project applications. Critical study and scholarly trans-

parency with respect to BCA and other quantitative selection criteria employed in
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Federal flood mitigation programs will be crucial as Justice40 implementation and

guidance is refined in future program cycles. As GMSLR accelerates and incentives

to mitigate flood risks in SLR-exposed areas grow stronger, agencies’ quantitative

analyses and the values embedded within them will be tools through which national

flood risk reduction priorities are expressed.

2.7 Conclusions

This study examines the effects of exposure to projected anthropogenic SLR

on measures of residential property value in Florida, Georgia, North Carolina, and

South Carolina using detailed property- and transaction-level information from mul-

tiple data sources. The price effects of two magnitudes of projected SLR—three and

six feet— are evaluated using a hedonic regression analysis. The preferred triple-

difference estimations’ results do not provide conclusive evidence to suggest negative

price effect solely attributable to GMSLR exposure risk emerged following publication

of the IPCC’s AR3 in 2001. However, over the 1993-2022 sample period, properties

in both a SFHA and the three-foot SLR-plain sold, on average, for -5.1% relative

to observably equivalent properties neither in a SFHA nor the SLR-plain. Similarly,

properties in both a SFHA and three-foot SLR-plain sold for -8.7% compared to com-

parable properties only in a SFHA. These observations suggest negative price effects

are only present in the portions of FEMA SFHAs which are most acutely exposed

to GMSLR, which are also areas with exposure to current coastal storm risk. These

results highlight the highly-correlated relationship between extant flood risk and slow-

onset GMSLR risk, and underscores the difficulty as well as importance of controlling

for existing storm risk when estimating climate change impacts in hedonic studies.

When conducting a novel comparison of regression estimates across multiple mea-

sures of coastal residential “property value”— transaction price and DRV— results
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indicate USACE structure values appear to vary with three-foot SLR-plain status

even when controlling for a host of structure-level characteristics. On average, struc-

tures in the three-foot SLR-plain were valued at 3.0% less than comparable properties

outside the SLR-plain. These results run contrary to what had originally been hy-

pothesized, and call into question whether there are unobserved elements of USACE’s

NSI evaluation methods or systemic compositional differences in residential housing

stock across SLR-plain status which lead to these outcomes. These findings have im-

plications for future research with respect to choice of appropriate “property value”

measures as well as potential confounding unobserved factors leading to estimates of

SLR exposure price discounts.

When considering heterogeneity in the effects of SLR-plain status across com-

munity race and income, estimations using distinct measures of residential property

value—transaction price and DRV—find positive effects from being located in rela-

tively higher-income census tracts and negative effects from being located in census

tracts with relatively higher BAA populations. On average, a 10% increase in census

tract BAA population is associated with an estimated 4.3% decrease in transaction

price and a 3.8% decrease in DRV. The effect of a 10% increase in census tract me-

dian income is associated with an estimated 2.9% increase in transaction price and

a 2.4% increase in DRV. These findings underscore the embedded nature of DRV as

a correlate and determinant of transaction price, and highlight preexisting property

value disparities across community race and income in areas exposed to GMSLR.

Findings are relevant to researchers studying public policy processes that influence

Federal flood mitigation infrastructure allocation and distributional outcomes.

This study’s results have important hazard mitigation and climate policy im-

plications regarding adaptation interventions which seek to mitigate damages from

anthropogenic GMSLR efficiently and achieve equity objectives. Going forward, pol-

icy interventions such as buyout programs, publicly-funded flood mitigation measures,
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and climate risk disclosure requirements will need to consider preexisting homeown-

ership and property value disparities, heterogeneous buyer beliefs and preferences,

extant flood risk, appropriate property value measures, and quality of risk informa-

tion products to effectively manage emergent GMSLR impacts. Additionally, while

BCA is a quantitative tool used to support decisionmaking about adaptation inter-

ventions, ultimately difficult and value-laden decisions will need to be made about

where to allocate limited funds to provide protection against GMSLR impacts.



CHAPTER 3

Driving up flood risks? Examining vehicle
flood exposure, vulnerability, and disaster
assistance in the United States
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3.1 Introductory remarks

Motor vehicles are the most commonly-owned non-financial asset in the United

States (US) and are essential to most households, as well as the US economy at large.

In 2019, approximately 85% of US households owned at least one vehicle3 (Bhutta et

al., 2020), while in 2020 84% of US workers commuted to their place of employment in

a privately-owned vehicle (US Census Bureau, 2020). In 2020 there were an estimated

276 million highway-ready vehicles on the road in the US, the result of substantial

growth in the number of US vehicles in both absolute and per capita terms in recent

decades (US BTS, 2023). Projections indicate absolute annual motor vehicle sales

in the US will continue to see robust growth in the coming years (Archsmith et al.,

2022), suggesting the number of vehicles in the US is likely to increase in the near

term. Motor vehicles also transport the vast majority of children (ages 5-17) to school

(Jenkins, 2019), and these assets support critical public services such as firefighting,

policing, and medical assistance. Thus, vehicle assets are ubiquitous and essential to

the US economy and society at large.

Flooding is already estimated to be the costliest and most frequently-occurring

natural hazard in the US (FEMA, 2019). Anthropogenic climate change impacts

such as global mean sea level rise (GMSLR) and more extreme precipitation (IPCC,

2021), as well as urban development in existing flood-prone areas (Andreadis et al.,

2022; Rentschler et al., 2023), are contributing to an increasing number of people and

assets in floodplains (Wing et al., 2018). While many studies have focused on the

impacts of potential or actual flood hazard exposure on “property value” in the form of

residential and/or commercial building structures (Atreya et al., 2013; Baldauf et al.,

2020; Beltrán et al., 2018; Bernstein et al., 2019; Bin & Landry, 2013; Bin & Polasky,

2004; Fell & Kousky, 2015; Gibson & Mullins, 2020; Gourevitch et al., 2023; Hino

3In this study, the term “vehicle” means a a highway-ready motor vehicle as defined by the United
States Department of Transportation Bureau of Transportation Statistics. The vast majority of
vehicles in the US are light duty and privately-owned.
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& Burke, 2021; Kelly & Molina, 2023; Murfin & Spiegel, 2020; Ortega & Tas.pınar,

2018; Shr & Zipp, 2019; Wing et al., 2018), a relative paucity of research has focused

on potential and actual impacts of flooding to other important forms of household

property, such as vehicles. This chapter argues motor vehicles are a crucial household

asset warranting comprehensive study in the context of US flood risk management. In

addition to their critical role as a mode of transportation, vehicle assets represent an

important financial asset for many low-wealth households for whom an owned vehicle

may constitute a relatively large share of household net worth. Converging trends

of increasing number of US household vehicles, urban development patterns, and an

intensifying hydrological cycle driven by anthropogenic climate change underscore the

need for increased study of vehicle assets’ exposure and vulnerability to flood hazard.

The present study provides two foundational contributions to the literature on

household asset exposure to flood hazard in the face of climate change. First, the

research provides novel estimates of the number and value of vehicle assets located

in flood-prone areas in the contiguous US (CONUS). Second, this article undertakes

the first analysis of vehicle flood damage-related data from the Federal Emergency

Management Agency’s (FEMA) Individuals and Households Program (IHP) to better

understand the scope and magnitude of US vehicle flood damages and effectiveness of

related disaster assistance programs. This analysis considers public policy and market

factors which may or may not contribute to household financial resilience in the

wake of vehicle flood damages. This second contribution provides quantitative insight

into where, when, and how much Federal disaster assistance is disbursed to eligible

households in connection with vehicle flood damages following presidentially-declared

disasters. Additionally, application-level data are analyzed to improve understanding

of the factors that contribute to IHP application submission decisions and outcomes

when these disasters incur vehicle flood damages. Collectively, findings from this

research can inform vehicle owners, insurance professionals, infrastructure planners,
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and emergency managers about vehicle flood exposure issues, and may also inform

FEMA program design.

Section 3.2 describes the role of vehicles in the US economy, their vulnerability to

flood hazards, and the insurance markets as well as Federal disaster programs which

may provide financial support to affected vehicle owners for recovery post-flood. This

section also out lines the main hypotheses to be tested in the research. Section 3.3

describes the data used in the analysis. Section 3.4 explains the empirical methods

and approaches used to conduct the data analysis and test the stated hypotheses.

Section 3.5 presents and interprets results from the analysis. Section 3.6 discusses

policy implications and limitations of this line of inquiry, as well as opportunities for

future research. Section 3.7 contains the conclusion.

3.2 Background and hypotheses

3.2.1 Vehicle assets and relative value

As noted above, vehicles are widely-owned and economically important house-

hold assets. Of the approximately 276 million highway-ready motor vehicles in the

US, US Census Bureau (USCB) data indicate households in the CONUS had access

to at least 209.6 million vehicles in 2020 (USCB, 2022). Motor vehicles are “normal

goods,” meaning consumer demand for them increases with income (Samuelson &

Nordhaus, 2009). While some analysts and advocates have highlighted the fact that

replacing widespread private motor vehicle use with alternative transportation modes

(e.g., public rail) has the potential to meet societal objectives such as air quality im-

provements or greenhouse gas emissions reductions (Bleviss, 2021), evidence suggests

consumers place considerable value on their owned private vehicles relative to current

alternative transportation modes (Moody et al., 2021). The number of vehicles on

the road in the US continues to grow in both absolute and per capita terms (US BTS,



44

2023), suggesting robust US consumer preferences for travel via private passenger ve-

hicles. This trajectory, in conjunction with expanding and intensifying flood hazard

in many regions in the US, motivates Hypothesis 1 (H1) below:

Hypothesis 1: A large quantity of vulnerable vehicles at sizable

aggregate value are located in US floodplains.

Recent research suggests more than 40 million US residents live in areas with a

1% annual exceedance probability (AEP) of flood exposure (Wing et al., 2018), and

this figure has the potential to increase due to urban growth in existing floodplains

(Zhang et al., 2018) and/or expanding flood hazard driven by anthropogenic climate

change (Davenport et al., 2021; Strauss et al., 2021). Given high rates of vehicle own-

ership in the US, H1 hypothesizes vulnerable vehicle assets are subject to widespread

flood exposure comparable to exposure of human populations.

While the value of vehicle assets in the US represents just 3.2% of total household

wealth, as compared with equity in primary residences which represents 28.5% of

total household wealth,4 the absolute aggregate market value of vehicle assets in

the US is non-trivial at trillion-dollar scale.5 Further, the relative value of vehicle

assets is high for low-wealth households. The national household vehicle ownership

rate of approximately 83.1% is higher than the household home ownership rate of

61.8%.6 (Sullivan et al., 2023), implying many households are vehicle owners but

not homeowners. Figure 3.1 below uses US Federal Reserve Survey of Consumer

Finances data to describe the relationship between household net worth and asset

ownership rates for vehicle and housing assets. Among households in the bottom

25% by net worth, the vehicle ownership rate is 68.8%, while the homeownership rate

is just 8.1% (Fed SCF, 2022). Figure 3.2 presents the average value of households’

4This statistic only pertains to the bottom 99% of US households according to wealth.
5Conservatively assuming all registered vehicles in the US are worth ∼$4,000 each leads to aggregate
vehicle value in excess of $1 trillion; the true monetary value is likely much higher.

6“Homeownership“ is defined here as a non-renter household owning at least some equity in their
primary residence.
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owned vehicle assets7 as a share of aggregate household owned asset value. These

data suggest that as a household’s net worth8 increases, the value of owned vehicle

assets tends to increase in absolute value but decrease as a share of the value of the

household’s gross assets. For example, in 2019 the average household in the top 10%

of US households by net worth owned $56,799 worth of vehicles, but those vehicles

represented less than 1.0% of the household’s gross assets (e.g., including real estate,

retirement savings, etc.). In contrast, the average household in the bottom quartile

of net worth owned $8,274 worth of vehicle assets, and those vehicles represented

approximately one-quarter of the value of the household’s gross assets. Thus, while

vehicles make up a relatively small share of aggregate US asset wealth, on average they

represent a relatively high percentage of total net worth for low-wealth vehicle-owning

households.

3.2.2 Vehicle flood damage

Figure 3.3 describes US Army Corps of Engineers (USACE) estimates of the

flood-vehicle depth-damage relationship across vehicle types. According to these

Corps estimates, on average a single flood event causes damages of 20% to a sports

utility vehicle (SUV)9, with the same flood level causing an average of nearly 40%

to sedans (USACE, 2009). Corps estimates suggest five feet of inundation generally

leads to what would be considered a “total loss” in many states (Policy Genius, 2023),

which in the insurance industry typically implies the cost of repairing the flooded ve-

hicle exceeds the post-repair value of the vehicle (Oxford Reference, 2023). Thus,

a single flood event has the potential to impose sizable damages on a vehicle, with

significant financial ramifications for households without commensurate insurance.

7These averages include households owning no vehicles and do not only reflect average values for
vehicle-owning households.

8According to the 2019 Survey of Consumer Finances, the median net worth for a household in the
bottom 25% was $300 while the median net worth for a household in the top 10% was approximately
$2.6 million.

9This means the cost of the damage represents approximately 20% of the vehicle’s pre-flood value.
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Figure 3.1: Household asset ownership by net worth, 2022
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Figure 3.2: Owned vehicle assets as a share of total household asset wealth, 2019

24.8%

13.3%

6.9%

3.7%

0.9%

8,274

17,187

23,797

31,093

56,799

0%

10%

20%

30%

$0

$18,000

$36,000

$54,000

Top 10% 25-49.9% 50-74.9% 75-89.9% Top 10%
Net worth by percentile

A
vg

. v
al

ue
 o

f o
w

n
e
d
 v

e
h
ic

le
s 
a
s
 a

 s
h
a
r
e
 o

f 
g
r
o
s
s
 h

o
u
s
e
h
o
ld

 a
s
s
e
t 

w
ea

lt
h

M
e
a
n
 o

w
n
e
d
 v

e
h
ic

le
 e

q
u
ity

Vehicle assets as a share of total household asset wealth, 2019

Source: US Federal Reserve Bank Survey of Consumer Finances, 2019.



48

Figure 3.3: Depth-damage estimates by vehicle type
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In the prevailing climate hazard mitigation literature, hazard risk is defined as

the product of a human or ecological system’s exposure to a climate hazard coupled

with that individual or system’s vulnerability to the hazard (IPCC, 2022). Figure 3.3

demonstrates vehicles are generally vulnerable to flood hazard when exposed. This

study argues conceptual application of the canonical strategic framework of climate

change adaptation and hazard risk mitigation responses— accommodate, protect,

retreat, advance— may be extended to vehicle assets to inform future risk reduction

activities. This application is illustrated in Figure 3.4.

In practice, these adaptive responses in the context of vehicles are inherently

different from applications vis-à-vis relatively immobile assets (e.g., real estate) given

vehicles’ greater capacities for mobility and flood avoidance. While the economic jus-

tification for large-scale infrastructure investments to protect vehicle assets may be

weaker than for structures, it is possible other adaptive responses may increasingly

emerge among vehicle owners to facilitate temporary retreat, such as flood warning

systems, or accommodation, such as vehicles with higher ground clearances or am-

phibious capabilities. Notably, while the “advance” adaptation strategy in the context

of managing GMSLR risks is typically associated with seaward expansion measures,

e.g. land reclamation or engineered artificial islands (Haasnoot et al., 2021; Sengupta

et al., 2023), this chapter contributes an alternative interpretation of the “advance”

strategy in the context of vehicle assets. Specifically, vehicle owners may drive their

vehicles into inundated areas, which has the potential to be a maladaptive behavior

if the vehicle is vulnerable to the flood hazard. Indeed, when considering research

about increased disruption to vehicles and road networks due to flooding (Hauer et

al., 2023; Pregnolato et al., 2017), as well as evidence indicating the most common

flood fatalities in the US occur in vehicles (CDC, 2020), it is clear the issues of vehi-

cle vulnerability and exposure to flood hazard warrant further study to promote safe

transportation alternatives and reductions in loss of property and human life.
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Figure 3.4: General framework of vehicle flood adaptation approaches.i. Retreat ii. Accommodate ,,,-•-,,, 

t ,a iii. Protect ,,,-•-,,, iv. Advance ,,,-•-,,, 

t  t  

t  t  

Source: Modified from Nicholls, 2018.
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3.2.3 Disaster assistance and insurance

Unlike residential and commercial real estate assets, the structures and contents

of which may be covered by FEMA’s National Flood Insurance Program (NFIP),

vehicle assets are not eligible for NFIP coverage (FEMA, 2022). In order to insure a

vehicle against flood damages, vehicle owners must purchase a multi-peril “compre-

hensive auto insurance policy” from a private insurer (Car and Driver, 2020), which

typically covers damages from multiple sources such as flood, fire, and vandalism.

This coverage is not legally required in any US state, though is often required by

lenders and lessors (Insurance Information Institute, 2018). According to the Na-

tional Association of Insurance Commissioners (NAIC), in 2020 the average price of

a comprehensive auto insurance policy in the US was $174.26 per year, with aver-

age prices ranging by state from $97.26 in California to $353.10 in South Dakota

(NAIC, 2023). The total reported collected premiums across more than 178 million

vehicle-years of comprehensive insurance policies in 2020 was more than $31 billion,

suggesting comprehensive auto insurance is a market of substantial size. While ag-

gregated data on comprehensive insurance policies are available via the NAIC, firms’

comprehensive insurance data describing claims and payouts are generally propri-

etary, not publicly-available, and have not been made available by large insurers10 for

this analysis. Additionally, the multi-peril nature of comprehensive auto insurance

presents an added layer of complexity for researchers interested in claims and payouts

specifically pertaining to flood hazard, as publicly-available information on policies

and claims are not disaggregated at the peril-level.

In the event a motorist experiences vehicle flood damage, a number of pathways

to financially recover from the shock may be available. Figure 3.5 describes these

pathways in a simple conceptual diagram. As described above, a vehicle owner pos-

10The largest auto insurers by number of policies written, e.g. State Farm, Geico, Progressive, along
with smaller insurers such as Lemonade were contacted but no data provided.
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sessing a comprehensive insurance policy may be eligible for a claim payout from their

insurance company, the funds from which may be used at the policyholder’s discre-

tion (e.g., to repair or replace the damaged vehicle). However, not all motorists have

comprehensive coverage. Figure 3.6 below shows the estimated share of motorists

driving in the US without comprehensive coverage, which according to the Insurance

Information Institute (III) is roughly 31%11 (III, 2023a, 2023b). If a vehicle owner

experiences uninsured vehicle flood damages in connection with a flood event that is

not a presidentially-declared disaster nor emergency under the Stafford Act (FEMA,

2021), the costs of the damage are likely to be borne by the owner.

However, if uninsured vehicle flood damages occur during a presidentially-declared

disaster or emergency, the vehicle owner may be able to access funds from FEMA

through the IHP, a sub-program of the agency’s larger Individual Assistance (IA)

program. According to the 2021 Individual Assistance Program and Policy Guide:

IHP assistance provides financial assistance and direct services to eligible
individuals and households who have uninsured or underinsured neces-
sary expenses and serious needs. IHP assistance is not a substitute for
insurance and cannot compensate for all losses caused by a disaster; it
is intended to meet basic needs and supplement disaster recovery efforts.
(FEMA, 2021)

Thus, IHP assistance can help smooth the financial shock of uninsured vehicle

flood damages and associated recovery expenses. However, by program design, IHP

awards are not intended to make eligible applicants whole post-disaster. Following a

disaster or emergency declaration, vehicle owners in eligible counties may apply for

disaster assistance to repair or replace a vehicle through FEMA’s IHP, specifically in

the “Other Needs Assistance” (ONA) category and the “Transportation Assistance”

(TA) subcategory.12 An applicant with vehicle flood damage may receive TA from

11Due to data availability, this statistic crudely relies on III’s national estimate of 12.6% unin-
sured motorist rate in 2019 and their estimate from 2020 that 21% of insured motorists have no
comprehensive auto insurance coverage.

12In Fiscal Year 2023, FEMA’s maximum allowable amount of financial assistance to one individual
or household under the ONA category within the IHP was $41,000.

https://www.Federalregister.gov/documents/2022/10/25/2022-23162/notice-of-maximum-amount-of-assistance-under-the-individuals-and-households-program
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FEMA if a number of eligibility conditions are met, including but not limited to:

(i) legal compliance with applicable state registration and insurance requirements for

the damaged vehicle; (ii) disaster-caused uninsured damage that renders the vehicle

inoperable, and; (iii) prior unsuccessful application for a US Small Business Admin-

istration (SBA) loan. Additionally, FEMA IHP guidance indicates TA awards are

“usually limited to one vehicle.” Previous scholarship focusing broadly on FEMA’s

IHP with respect to housing assistance has found that, for example in the case of Hur-

ricane Maria in Puerto Rico, approximately 60% of all applicants for IHP assistance

were ineligible and therefore received no disaster assistance (Garćıa, 2022). Rejected

applicants were found to be ineligible primarily due to failure to produce necessary

documentation (e.g., proof of ownership) required by IHP. The present study is the

first to focus exclusively on the incidence of IHP applications with reported vehicle

flood damages and determinants of outcomes among this set of IHP applications.

The substantial percentage of motorists driving without comprehensive auto

insurance coverage, coupled with the growing reported costs of large-scale climate-

mediated disasters in the US (NOAA NCEI, 2021) motivates Hypothesis 2 (H2)

below. Additionally, previous research on the positive income elasticity of demand

for auto insurance (Showers & Shotick, 1994) motivates Hypothesis 3 (H3), as we

might expect to see lower comprehensive auto insurance coverage rates among lower-

income households and greater need for IHP assistance among this population. The

work of Garćıa (2022) further motivates H3 as some applicants, e.g. those who do

not meet minimum state auto insurance requirements and/or do not have up-to-date

vehicle registration, may be ineligible to receive assistance due to lack of required

documentation (e.g., proof of ownership, effective minimum insurance coverage).

Hypothesis 2: A significant number of vehicles experience unin-

sured flood damages during presidentially-declared disasters,

and these cases only represent a portion of uninsured vehicle

flood damages.
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Figure 3.5: Conceptual diagram of post-flood vehicle owner financial recovery options
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Figure 3.6: Estimated percentage of motorists in US states without comprehensive auto insurance coverage
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and

Hypothesis 3: Low-income households will be overrepresented

among IHP applicants experiencing vehicle flood damage, but

underrepresented among awardees due to ineligibility.

3.3 Data

3.3.1 Study area and land use

The study area in which H2 and H3 will be tested is the entire US, while H1

will be tested in the 48 states in CONUS. In 2020, the US population was approxi-

mately 331.1 million people, while the population of CONUS was approximately 328.2

million people (USCB, 2023). A central data source in this analysis is the USCB’s

Topologically Integrated Geographic Encoding and Referencing (TIGER) database,

from which I access the legal boundaries for 83,287 census tracts in CONUS. To

understand communities’ level of social vulnerability, census tracts’ Centers for Dis-

ease Control and Prevention (CDC) 2020 Social Vulnerability Index (SVI) scores are

incorporated as well (CDC, 2023).

In order to represent variation in land use types across study area tracts, the

United States Geological Survey’s (USGS) National Land Cover Database (NLCD) is

employed (USGS, 2023). This product covers the entirety of CONUS’s land area and

categorizes the country’s territory across 16 land cover types at 30-meter resolution.

The 2019 NLCD data product is used in the analysis.

3.3.2 Vehicle data

This study focuses primarily on household vehicles, as opposed to commercial or

publicly-owned vehicles. Of the approximately 276 million vehicles on the road in the
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US in 2020, fewer than 2% of those were publicly-owned and the rest were privately-

owned (US DOT, 2020). In 2022, there were approximately 33.1 million commercial

vehicles on the road in the US (S & P Global Mobility, 2023), suggesting roughly

five out of six registered vehicles in the US are privately-owned household vehicles.

To estimate the number of household vehicles available in each CONUS census tract,

USCB 2020 American Community Survey (ACS) five-year estimates are accessed.

Specifically, the ACS provides estimates of the number of occupied housing units with

no vehicles available, one vehicle available, two vehicles available, or three or more

vehicles available. In this analysis, the total number of household vehicles in a census

tract is calculated to be the sum of all vehicles available at occupied housing units

in 2020. This calculation assumes a value of three vehicles available for households

in occupied housing units corresponding to the “three or more vehicles available”

USCB category. By construction, this truncation biases final estimates using these

inputs downward, as household vehicles beyond the third vehicle are not captured.

Additionally, margins of error are calculated in accordance with recommended USCB

methodology (USCB, 2020).13

While in this analysis UCSB data are primarily used to estimate the number

of household vehicles in US floodplains, two other data sources are incorporated to

provide estimates of the value of vehicles in flood-prone areas. First, data from the

popular and widely-cited research firm Kelley Blue Book (KBB) are used to con-

struct a weighted average of the annual average used vehicle sale price in the US from

2019-2021 (Kelley Blue Book, 2023), which is estimated to be $23,367.14 Second,

the USACE 2022 National Structure Inventory (NSI) is used to provide an alterna-

13Specifically, margins of error (MOE) for count estimates are calculated using the following formula:
MOE(Est1 + Est2) =

√

MOE(Est1)2 +MOE(Est2)2. Margins of error for count estimates of
the number of household vehicles available at the census tract level are multiplied by the fraction
(

Developedlandinfloodzone(km2)
Totaldevelopedlandarea(km2)

)

shown in Equation (3.1.)
14In comparison, Table 1-17 in the US Department of Transportation’s “National Transportation
Statistics 2021” report indicates the average price in 2021 dollars of new passenger car and light
truck sales in 2019 was $38,003 while the average price of used passenger car and light truck sales
in the same year was $20,600 (US BTS, 2023).
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tive source of broad vehicle value estimates (USACE, 2022a). The USACE inventory

synthesizes data from across multiple sources and includes georeferenced information

about approximately 123 million structures across the entire US, approximately 122

million of which are in CONUS states. Included in the inventory are estimates of

the “value in [2021] dollars of the cars at the structure.” According to USACE, this

structure-specific value is estimated based on the number of housing units per resi-

dential structure and the number of employees per commercial structure, and does

not adjust for variation in vehicle ownership rates nor income across the country.

Thus, a key distinction is that estimates using USACE NSI georeferenced vehicle val-

ues reflect the value of vehicles at commercial structures. Additionally, while KBB

represents a vehicle value derived from market prices, the USACE NSI data aim to

represent vehicle depreciated replacement value.15

3.3.3 Flood hazard

First, FEMA’s National Flood Hazard Layer (NFHL) is used to portray the

likelihood of potential flood exposure across CONUS (FEMA, 2023e). Previous flood

modelling research has highlighted a number of shortcomings of FEMA flood maps,

such as the fact they are not universally available,16 are of varying age and quality

(Wing et al., 2018), and do not reflect all relevant phenomena influencing flood haz-

ard probabilities (e.g., extreme precipitation-driven flood events) (US GAO, 2021).

However, the NFHL covers the majority of the relevant study area and is highly

policy-relevant due to the fact it supports the NFIP and underpins flood insurance

rate making, floodplain management regulations, and mandatory purchase require-

ments of flood insurance for applicable homeowners.

15This information was communicated via email correspondence from Nick Lutz, USACE Hydrologic
Engineering Center economist on May 31, 2023. USACE NSI data do not include estimates for
the number of vehicles located at structures, only value.

16According to FEMA, the NFHL’s digital data cover “over 90 percent of the U.S. population.”

https://www.fema.gov/flood-maps/national-flood-hazard-layer
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The NFHL is a vector shapefile containing various categorizations of flood zones,

which are broadly characterized into two groups for the purposes of this analysis: (i)

Special Flood Hazard Areas (SFHAs), and (ii) moderate flood hazard areas (MFHAs).

SFHAs are generally defined by FEMA as “the area that will be inundated by the

flood event having a 1-percent chance of being equaled or exceeded in any given year.”

There are various subcategories of SFHA flood zones (e.g., Zones A, AE, V, VE) that

correspond to different degrees of flood hazard exposure driven by specific physical

conditions. Similarly, MFHAs are represented by multiple FEMA-designated zones

(e.g., Zone B or Zone X [shaded]), and these are defined as “areas between the limits

of the base flood and the 0.2-percent-annual-chance (or 500-year) flood” (FEMA,

2023a). A critical shortcoming of these FEMA mapping products is the absence of

flood depths or base flood elevations for some SFHA and MFHA flood zones (e.g.,

Zone A, Zone X [shaded]).

Second, to provide an alternative representation of potential flood hazard expo-

sure, property-level outputs from the First Street Foundation’s Flood Model (FSF-

FM) are incorporated. While detailed raster or mesh files showing flood depths

and probabilities were not made available by FSF, point data representing estimated

property-level flood exposure were acquired for the study area. FSF property-level

flood hazard exposure estimates rely on geolocated Lightbox data from November,

2021 and employ the probabilistic hydraulic and hydrologic FSF-FM, which incor-

porates finest inputs at 3-meter resolution. The FSF-FM additionally includes an

explicit precipitation model to capture potential hazard driven by pluvial flooding,

an analytical component missing from FEMA NFHL products (First Street Founda-

tion, 2023). Only properties with “major flood risk” as denoted by property-level

FSF “Flood Factor”® score are analyzed in this study17

17Specifically, properties with Flood Factor® scores of 5 or greater are included. According to FSF’s
documentation, “Properties with at least an 80% chance of flooding over 30 years will have a Flood
Factor of 5 or higher.”
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3.3.4 FEMA Individuals and Households Program

overview

To test hypotheses H2 and H3, application data from FEMA’s IHP are leveraged.

The IHP application data available on FEMA’s OpenFEMA IHP webpage do not

include information about applicants’ vehicle flood damage experiences nor TA awards

explicitly pertaining to vehicle flood damage, therefore Freedom of Information Act

(FOIA) request 2022-FEFO-00281 was submitted to acquire these application-level

details. Approximately 1.1 million records reporting vehicle damage were received in

connection with the FOIA request, and 160,565 of these applications reported vehicle

flood damage.

Table 3.1 presents summary statistics of the IHP application data received via

FOIA, specifically those applications reporting vehicle flood damage. The final sample

data only represent applications with reported vehicle flood damage. Across the

sample period 2007-2022, just 3% of applicants qualified for a SBA disaster loan18 and

only 18% of applications received a TA award, suggesting most applications reporting

vehicle flood damage do not receive any Federal financial support in connection with

their case. The mean and median TA award amounts across the sample period among

applicants receiving an award are $4,624 and $5,000, respectively.

Figure A.13 in the Appendix depicts the distribution of TA award amounts, and

the shape of the distribution exhibits multimodal characteristics with relatively high

shares of the distribution of awards falling in the $0-$1,000, $6,000-$8,000, and $9,000-

$10,500 ranges. Figure A.14 in the Appendix also shows the number of TA applica-

tions with reported vehicle flood damage by income group, and shows that approx-

imately 70% of applications come from individuals or households making <$30,000

per year. Across 28,474 TA awards to applicants with vehicle flood damage, a total

18In the FEMA IA program, certain forms of ONA, such as TA, are ”SBA-dependent.” This means
an IA applicant is only eligible to receive the SBA-dependent form of IA if they have first unsuc-
cessfully applied for a SBA disaster loan.
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of $131.7 million was awarded by FEMA from 2007-2022. These findings provide

compelling evidence to suggest H2 is true. Further, Figure A.15 indicates more than

half of all TA award dollars were awarded in connection with just four disaster-state

cases: Hurricane Sandy in New York (2012), Hurricane Harvey in Texas (2017), severe

unnamed storms in Louisiana (2016), and Hurricane Ike in Texas (2008). According

to results in Table 3.1, the average water level at sample applicants’ residences during

the flood event that damaged their vehicle(s) was 17.4 inches. However, as the plot in

Figure A.16 highlights, relatively large TA awards were disbursed to some applicants

reporting little or no flood damage at their residence, while other applicants with high

reported water levels at their residence received no TA award. These results suggest

vehicles and residences are not always co-located, and in some cases households’ ve-

hicles and residences may experience different depth or intensity of flood exposure.

Additionally, these results imply the potential for applicants to experience significant

flood exposure, but not receive requested assistance due to ineligibility.

3.4 Methods

3.4.1 Dasymetric mapping

A dasymetric mapping approach is adopted to test H1 and provide tractable

estimates for the number and value of vehicles located in US floodplains. Vehicles,

like people, are dynamic in space and time, so the true number of vehicles in US

floodplains is not static. While the frontiers of remote sensing data and machine

learning techniques are advancing such that researchers are able to observationally

identify the number of vehicles in a limited geographic area at a specific point in

time with considerable accuracy (Froidevaux et al., 2020), such approaches are not

currently viable at scale using publicly-available data.
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Table 3.1: Individuals and Households Program summary statistics, applications with recorded vehicle flood damage

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Year Mean TA Median TA # of Applications Applications eligible Mean water Flood Homeowners

award* award* applications receiving TA† for SBA loan† level (inches) insurance† insurance†

2007 $2,849 $1,075 9,626 0.13 0.07 20.0 0.16 0.51

2008 $2,839 $600 41,462 0.13 0.04 18.6 0.19 0.40

2009 $3,395 $1,689 9,743 0.15 0.04 16.4 0.08 0.40

2010 $3,680 $2,267 22,999 0.08 0.04 14.9 0.09 0.43

2011 $3,628 $2,144 5,655 0.21 0.02 17.4 0.11 0.31

2012 $7,921 $10,000 15,607 0.33 0.06 30.6 0.23 0.39

2013 $4,806 $3,828 1,331 0.24 0.01 13.5 0.04 0.19

2014 $2,341 $645 4,161 0.15 0.01 8.3 0.01 0.10

2015 $4,068 $4,263 1,996 0.31 0.01 8.9 0.03 0.11

2016 $4,764 $6,000 11,352 0.29 0.02 16.9 0.05 0.13

2017 $4,712 $4,659 24,640 0.22 0.03 12.0 0.05 0.11

2018 $4,194 $1,786 1,623 0.27 0.02 9.9 0.04 0.11

2019 $5,000 $6,000 1,292 0.20 0.02 11.8 0.06 0.11

2020 $4,330 $4,000 1,526 0.04 0.01 14.4 0.02 0.03

2021 $5,879 $6,000 6,916 0.10 0.02 17.1 0.03 0.12

2022 $5,848 $7,500 636 0.03 0.00 25.1 0.02 0.08

2007-2022 $4,624 $5,000 160,565 0.18 0.03 17.4 0.12 0.31

*among applicants receiving any Transportation Assistance amount >$0.
† number represents share of applications.
Note: data obtained from FEMA via FOIA request 2022-FEFO-00575.
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Dasymetric mapping can be employed to improve the spatial accuracy of data

that are aggregated into arbitrary geographic units, such as population estimates

produced by USCB. A binary division dasymetric mapping approach is used at the

census tract level (Sleeter & Gould, 2007; Swanwick et al., 2022), with the land

area of each CONUS state designated as “developed” or “not developed” at 30-

meter resolution based on USGS’s NLCD. Such a measure assumes the US vehicle

population is located entirely on land that is “developed” as defined by USGS, and

takes into account the fact the US vehicle population is not evenly distributed across

each census tract’s land area.

The number of vehicles located in FEMA’s SFHA and MFHA in each census

tract is estimated using Equation (3.1). “Developed land in flood zone” refers to the

land area of each census tract that is both developed and in a FEMA-designated flood

zone (i.e., SFHA or MFHA). It is important to note this equation assumes there is a

homogeneous distribution of household vehicles across all developed areas regardless

of land use intensity and may bias the estimates of the floodplain population (Flores

et al., 2023), however this is an assumption that has been used elsewhere in the flood

hazard exposure literature to produce credible spatially-explicit human population

flood exposure estimates (Tate et al., 2021).

To produce estimates of the value of vehicles in FEMA flood zones using dasy-

metric mapping results, the number of exposed vehicles as calculated by Equation

(3.1) is multiplied by the 2019-2021 KBB average used vehicle sale price referenced

above. An illustrative example describing the data inputs used in Equation (3.1) is

shown for 13 census tracts in Miami Beach, FL in Figure 3.7. Panel (a) includes the

census tracts’ land boundaries and FEMA flood zone areas,19 while Panel (b) shows

the same tracts’ land use statuses according to USGS’s 2019 NLCD product. Table

3.2 shows results from Equation (3.1), in Panel (a) showing the illustrative census

19This area does not contain MFHA zones.
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tracts’ estimated 2020 human and vehicle populations, land area (km2), developed

land area (km2), share of developed land in a SFHA, and estimated number of ve-

hicles in a SFHA. Panel (b) shows mean and median values for these same metrics

across the 83,267 census tracts in the CONUS study area. Estimates indicate 100%

of developed land area for ten of the illustrative Miami Beach tracts is located within

FEMA SFHAs, therefore all household vehicles in these tracts are estimated to be

in SFHAs. Sample-wide estimates in Panel (b) underscore these Miami Beach tracts

are more flood-exposed, and contain a much higher share of household vehicles in the

SFHA, than the average sample census tract.

# of exposed vehiclesCONUS =
n

∑

i=1









(Total vehiclesi) x





Developed land in flood zone (km
2
)i

Total developed land (km
2
)i













(3.1)

where:

i = census tract

n = total number of census tracts, 2020 (83,287)

3.4.2 Spatial matching

To complement the dasymetric mapping approach for estimating the value of

vehicles in flood-prone areas, simple spatial matching techniques are used to determine

the flood exposure of estimated vehicle value at USACE NSI structures relative to

both the FEMA flood mapping product and FSF-FM flood mapping outputs. First,

a spatial subset technique using a geographic information system identifies USACE

NSI structures that are located within FEMA SFHA and MFHA boundaries. Second,

as shown in Figure 3.8, geolocated FSF property-level Flood Factor scores (shown in

orange) are matched to geolocated USACE NSI structure data (shown in green) if

certain spatial criteria are met. In the scenario with more stringent criteria, denoted
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Figure 3.7: 13 illustrative census tracts in South Beach, Miami Beach, Florida by FEMA flood zone (left) and USGS NLCD land use designation
(right)
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Table 3.2: Summary statistics for census tracts’ land area and number of vehicles in FEMA Special Flood Hazard Areas

Panel (a): 13 illustrative census tracts in South Beach, Miami Beach, Florida.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Census tract Population Land area Developed Developed Developed & SFHA share Total household Vehicles in
GEOID (est.) (km2) land (km2) share SFHA (km2) of developed vehicles (est.) SFHA
4204 2, 368 0.39 0.39 1.0 0.39 1.0 871 871
4205 2, 111 0.37 0.37 0.99 0.36 0.98 730 711
4206 2, 079 0.87 0.85 0.98 0.78 0.92 1, 233 1, 128
4207 2, 797 0.11 0.11 0.96 0.11 1.0 1, 600 1, 600
4208 1, 411 0.13 0.12 0.99 0.12 1.0 837 837
4301 2, 449 0.13 0.13 0.96 0.13 1.0 1, 333 1, 333
4303 2, 749 0.43 0.43 1.0 0.43 1.0 972 972
4304 2, 209 0.50 0.49 1.0 0.49 1.0 1, 143 1, 143
4403 3, 481 0.32 0.32 1.0 0.32 1.0 1, 285 1, 285
4404 2, 206 0.40 0.40 1.0 0.40 1.0 941 941
4405 3, 763 0.35 0.35 1.0 0.35 1.0 1, 468 1, 468
4406 2, 493 0.19 0.19 0.96 0.19 1.0 1, 308 1, 308
4500 3, 983 1.54 1.35 0.88 1.18 0.87 2, 382 2, 082

Panel (b): All census tracts in the sample (N=83,267)
Population Land area Developed Developed Developed & SFHA share Total household Vehicles in

(est.) (km2) land (km2) share SFHA (km2) of developed vehicles (est.) SFHA
Mean 3,887 92.17 5.60 0.62 0.34 0.07 1,457 157.0
Median 3,782 4.65 3.28 0.75 0.07 0.02 1,407 49.5
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by “NSI-FSF-A” in Table 3.4 and Table A.8, USACE NSI and FSF observations

are matched if they are within five meters of one another in horizontal space (i.e.,

within five-meter buffer polygons surrounding the USACE NSI structure-level data

as shown in Figure 3.8) and within one meter of one another in vertical space vis-

à-vis structure foundation height above NAVD88. Figure 3.8 presents examples of

USACE NSI vehicle value observations which are excluded from the more stringent

spatial matching criteria on the basis of the horizontal space criterion; USACE NSI

structures, their buffers shown in green, without a corresponding overlapping FSF-

FM property are not included in “NSI-FSF-A” estimates. In a less stringent spatial

matching criteria scenario, denoted “NSI-FSF-B” in Table 3.4 and Table A.8, USACE

NSI and FSF observations are matched if they are within fifteen meters of one another

in horizontal space and two meters of one another in vertical space.

3.4.3 Regression models

The below estimation approaches are informed by guidance described inWooldridge,

2010. In the case of FEMA IHP TA application outcomes, the appropriate estimation

techniques depend on the specific research questions being asked. Recent scholarship

underscores the importance of distinguishing between the intensive and extensive

margins when evaluating outcomes with continuous values that can also equal zero

(Chen & Roth, 2023), such as IHP TA applications. As noted in the previous section,

more than 80% of the 160,565 IHP TA applications reporting vehicle flood damage

did not receive an award, and the median award among award recipients was $5,000.

In this chapter, both the extensive and intensive margins of IHP TA application out-

comes are of interest. The selected model approaches described below are therefore

motivated by a desire to understand the (i) factors that influence whether an applica-

tion successfully receives a TA award, and (ii) factors that predict a smaller or larger

award amount given the application received an award >$0.
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Figure 3.8: Illustrative example of spatial matching with five-meter buffer, Dare County, NC
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3.4.3.1 Probit

A standard Probit model is used to evaluate the extensive margin, specifically

factors that may influence whether an application for TA ultimately receives an award.

As described in Wooldridge (2010), a Probit model can be used to model binary re-

sponse probabilities. Etymologically, the term “Probit” is a portmanteau of “prob-

ability” and “unit” representing a “probability unit” (Bliss, 1934). In this research

setting, use of a nonlinear model, such as Probit, is preferred over a linear prob-

ability model (LPM) due to the fact LPM may erroneously estimate fitted values

outside the true binary response interval [0,1]. Further, LPM coefficient estimates

are of limited value with respect to interpretability given inherent shortcomings of

LPM model construction, notably LPM’s estimation of constant marginal effects re-

gardless of explanatory variable values. In this study, the response probability of

interest estimated via Probit is the probability an applicant reporting vehicle flood

damage receives a TA award conditional on a set of observed characteristics about

the application. Equation (3.2) below provides general intuition for the Probit model:

P (y = 1|x) = G(xβ) (3.2)

where x is (1 x K) representing the explanatory variable vector, β is (K x 1) rep-

resenting the parameter vector, the first element of x is unity (i.e., one), and G(.)

is the cumulative distribution function of the standard normal distribution, the link

function of the Probit model. β parameter estimates are numerically determined via

maximum likelihood estimation (Wooldridge, 2010).

Awardi,d,c,y = β1γd + β2λc∗y + αXi,y + ǫi,y (3.3)

Equation (3.3) represents the Probit model employed to test H3 and explore

related determinants of receiving a TA application award. The response variable,
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Award, may take on a value of either 0 or 1, and corresponds to IHP application i

in connection with FEMA disaster number d submitted in year y from an applicant

in county c. The γ term corresponds to a FEMA disaster fixed effect and the λ

term corresponds to a county-year fixed effect. X represents a vector of application-

specific characteristics, including: (i) a categorical variable describing applicant’s

annual household income; (ii) reported water depth above ground level at applicant

residence during disaster event; (iii) number of members in household; (iv) household

flood insurance status; and (v) household homeowners insurance status. ǫ is an

idiosyncratic error term.

3.4.3.2 Ordinary least squares

An ordinary least squares (OLS) approach is used to examine the intensive mar-

gin on a subset of observations which received a TA award. In Equation (3.4), the

response variable is no longer a binary as above, but instead a continuous value rep-

resenting the natural log of the TA award amount received by an applicant given the

award amount is > $0.

Ln(Award amount)i,d,c,y = β1γd + β2λc∗y + αXi,y + ǫi,y (3.4)

As outlined in Chen & Roth (2023), when considering estimation approaches to

evaluate an outcome variable that is weakly-positive but can also equal zero, estimat-

ing separate effects (e.g., via OLS and Probit such as above) to study the intensive

and extensive margins is presented as one tractable approach. Additionally, estimat-

ing a model using Poisson regression and expressing the average treatment effects in

levels as a percentage is also presented as an alternative. Results using this approach

are shown in Appendix Table A.9.
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3.5 Results

3.5.1 Estimated number and value of vehicles in floodplains

3.5.1.1 Dasymetric mapping

Table 3.3 presents estimates of the dasymetric mapping approach from Equation

(3.1) for the top five and bottom five CONUS states by estimated number of vehicles

in FEMA SFHAs20. Table A.7 shows these values for all 48 CONUS states. The

margins of error for the 95% confidence interval are shown, and the only source of

uncertainty included in these intervals originate from the USCB ACS population

sampling process. Results provide convincing evidence to support the claim H1 is

true, specifically that a large number of vehicles are located in US floodplains. Main

estimates find approximately 13.1 million (±19,907), 95% confidence interval [CI])

household vehicles are in SFHAs in CONUS states, and approximately 23.3 million

(±31,768, 95% CI) household vehicles are in MFHAs. Figure 3.9 Panel (a) displays

state-level results from Table A.7 rounded to the nearest hundred-thousand vehicles.

The three most populous states in the US are also the states with the highest

estimated number of household vehicles in SFHAs. Florida has the highest estimated

number of vehicles in floodplains by a wide margin, with approximately 2.9 million

(±16,744 95% CI) vehicles in SFHAs and more than 4.1 million (±23,845, 95% CI)

in MFHAs. California and Texas are the only other two states estimated to have

approximately one million or more household vehicles in SFHAs. While for most

states the total estimated number of vehicles in MFHAs is higher than the number

of vehicles in SFHAs by a factor of two or less, Arizona is an outlier. Approximately

163,600 (±1,401, 95% CI) household vehicles are estimated to be in SFHAs in Arizona,

however nearly three million (±11,864, 95% CI) are estimated to be in MFHAs. Upon

20“Top five” and “bottom five” determinations are made according to estimated values shown in
column (1)
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detailed inspection of the state’s NFHL maps, this large disparity between the number

of vehicles in SFHAs and MFHAs is likely due to the fact the vast majority of the city

of Phoenix, along with the surrounding metropolitan region, lies in MFHAs. Figure

3.9 Panel (b) illustrates the estimated value of vehicles in SFHAs by state, reflecting

the product of Table A.7 column (1) estimates multiplied by the aforementioned

KBB price of $23,367. Analogous results showing the number and value of vehicles

in MFHAs in CONUS states may be found in the Appendix in Figure A.17.

Findings also indicate a sizable share of vehicles in flood-prone areas are located

in communities which meet a key US Federal government regulatory definition of

“disadvantaged.” Specifically, the metric used to make this determination is the 2020

census tract-level CDC Social Vulnerability Index (SVI) score, with tracts exhibiting

SVI scores above 0.6 considered “disadvantaged.” This metric and threshold is se-

lected because it was the interim criterion used by FEMA in their FY2022 Building

Resilient Infrastructure and Communities (BRIC) program cycle to categorize areas

as “disadvantaged” in compliance with Executive Order 14008 and subsequent guid-

ance (FEMA, 2023g). In 2020, nearly 40% of the CONUS population resided in a

disadvantaged census tract according to this criterion. Estimates in Table 3.3 and Ta-

ble A.7 suggest approximately 5.2 million (±9,850, 95% CI) vehicles in disadvantaged

census tracts are located in SFHAs, while 10.0 million (±20,770, 95% CI) vehicles in

disadvantaged census tracts are in MFHAs. These findings imply many vehicles in

flood-prone areas are owned by disadvantaged populations.

3.5.1.2 Spatial matching

The spatial matching techniques outlined above do not generate estimates for

the number of vehicles in flood-prone areas, but they do produce estimates for the

value of vehicles in flood-prone areas across multiple flood mapping products. These

results serve as a robustness check to the above dasymetric mapping estimates. Table
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Table 3.3: Estimated number of vehicles in FEMA Special Flood Hazard Area and Moderate Flood
Hazard Area, thousands

(1) (2) (3) (4) (5) (6)
State Est. in 95% CI Est. in SFHA, Est. in 95% CI Est. in MFHA,

SFHA ME disadvantaged MFHA ME disadvantaged
Top five states
Florida 2,917.4 ±16.7 1,269.5 4,144.0 ±23.8 1,849.0
Texas 1,355.4 ±4.6 735.7 2,116.9 ±7.2 1,144.5
California 999.6 ±3.3 531.6 3,339.4 ±8.9 1,951.3
Louisiana 631.4 ±4.5 269.4 923.1 ±6.2 441.4
New York 436.8 ±3.3 168.4 721.5 ±4.6 288.1

Bottom five states
Wyoming 11.6 ±0.2 2.5 22.0 ±0.4 5.2
Maine 15.9 ±0.2 3.4 18.3 ± 0.2 4.3
Vermont 16.4 ±0.2 4.3 20.3 ±0.5 5.2
Montana 29.6 ±0.4 6.1 50.3 ±0.6 9.1
Idaho 32.5 ±0.5 9.7 78.2 ±1.3 23.9

All 48 CONUS states 13,074.9 ±19.9 5,174.2 23,341.3 ±31.8 10,000.2
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Figure 3.9: Panel (a) shows the estimated number of vehicles in FEMA SFHA, millions, 2020. Panel (b) shows the estimated value of vehicles in
FEMA SFHA, billions ($), 2020 using the dasymetric mapping technique.
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3.4 provides estimates of the value of vehicles across techniques and data products for

the top five and bottom five CONUS states according to estimated values in column

(1). Results for all 48 CONUS states may be found in Table A.8.

Columns (1) and (2) show estimates of the value of flood-exposed vehicles from

the previous section using the dasymetric mapping technique estimates and the afore-

mentioned KBB weight average price. Columns (3) and (4) include the estimated

value of vehicles from USACE NSI structures that are within FEMA SFHAs and

MFHAs, therefore they rely upon the same flood mapping product as columns (1)

and (2), but a different vehicle value data source. Last, columns (5) and (6) represent

estimates based on matched USACE NSI and FSF-FM property-level data for prop-

erties determined by FSF to have “major” flood risk. Column (5) shows results from

the matches meeting the more stringent spatial criteria (five-meter horizontal space

radius; one-meter vertical space radius) while column (6) shows estimates from the

approach using less stringent spatial criteria (fifteen-meter horizontal space radius;

two-meter vertical space radius).

While there is some variation across estimates indicating results are moderately

sensitive to vehicle data sources as well as flood mapping data sources, there are a

number of consistent insights across methods and data products which imply robust

findings. First, these findings provide further evidence H1 is true. Even in the lowest

national estimate shown in Table 3.4, the value of vehicles in SFHAs according to

USACE NSI georeferenced values, an estimated $227.6 billion worth of vehicles in

CONUS state areas are estimated to have a 1% AEP of flood exposure each year. At

the highest end, column (2) findings indicate more than half a trillion dollars’ worth

of household vehicles are estimated to be in areas estimated by FEMA to have at

least a 0.2% AEP of flood exposure.

A number of sensitivities worth discussing are present in these results. While

the dasymetric mapping-derived estimates in column (2) suggest the value of vehicles
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in MFHAs is greater than the value in SFHAs by a factor of approximately 1.7,

the USACE NSI estimates in column (4) estimate the value of vehicles in MFHAs is

greater than the value in SFHAs by a factor of nearly 2.2, suggesting the results using

USACE NSI inputs are more sensitive to SFHA and MFHA status than dasymetric

mapping vehicle value inputs. Additionally, CONUS-wide results in column (6) are

greater than those in column (5) by a factor of 1.4, highlighting the sensitivity of

results using FSF-FM outputs to stringency of spatial matching criteria.

Despite sensitivities, clear patterns are evident at both the state and CONUS

level. Florida persists as the state with the greatest estimated value of vehicles in

flood-prone areas across all methods and data inputs shown in Tables 3.4 and A.8.

Even the lowest estimate finds approximately $60 billion worth of vehicle assets in

the state are in areas with FSF-defined “major” flood risk, while the highest estimate

indicates more than $100 billion worth of vehicles are in Florida FEMA SFHAs and

MFHAs. California, Texas, Louisiana, and New York are all also consistently among

the states with the greatest aggregate vehicle value exposed to potential flooding, at

scales in the tens of billions of dollars.

While technical comparison of estimates across flood models is difficult due to

limited available information regarding methodology and precise exposure probabil-

ities within the FEMA flood zone designations and FSF-FM Flood Factor scores,

the estimates across methods and data sources are similar enough in magnitude to

imply a convergence toward credible insight in the aggregate. When comparing what

are arguably the most conservative estimates in Table 3.4, columns (1), (3), and (5),

estimated values differ from one another by no more than a factor of 1.45. Thus,

these findings point toward general agreement: hundreds of billions of dollars’ worth

of vehicles are estimated to be located in flood-prone areas in CONUS.

While multiple key uncertainties remain about vehicle owners’ vehicle flood dam-

age mitigation behaviors in advance of and during flood events, as well as true spatial
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distribution of vehicles and their value, constructing a simple back-of-the-envelope es-

timate of average annual losses (AAL) may be instructive for intuition and to inform

future research, recognizing much more refinement is needed to improve the accuracy

and actionability of such estimates. By applying the probability of exposure to a 1%

AEP flood event with depth of two feet21 to the estimated population of vehicles in

SFHAs, and assuming a conservative depth-damage estimate of 30% based on US-

ACE estimates illustrated in Figure 3.3, we may move toward an AAL estimate for

vehicle flood damages. This approach, among other assumptions, does not assume

any vehicles move into nor out of the floodplain during the flood event, all vehicles

are located at ground level, and assumes statistical independence between vehicles’

flood exposure probabilities such that 1% of all vehicles in SFHAs are exposed to a

two-foot flood in a given year. Critically, this simple calculation does not account for

heterogeneity in vehicle type, which has important implications for vehicle value and

vulnerability. Data from Table A.8 column 1 are used in this simple method mul-

tiplying these three terms–(i) estimated value of vehicles in SFHA, (ii) approximate

annual probability of exposure to a two-foot flood event, and (iii) estimated damages

associated with exposure to a two-foot flood event–to arrive at a crude AAL estimate

of nearly one billion dollars per year.

3.5.2 FEMA Individuals and Households Program outcomes

3.5.2.1 Extensive margin analysis

Table 3.5 below presents results from the Probit regression model specified in

Equation (3.3). As noted in Section 3.4.3.1, interpretation of Probit results is different

21While FEMA flood zones unfortunately do not universally provide information about expected
flood depths of the 1% AEP flood event in all flood zones, this information is available for some
zones such as Zone AO and AH. In these SFHA zones the anticipated depths of the 1% AEP flood
event are 1-3 feet. Zones V, VE, and V1-30 all carry risk from additional hazard from wave action.
For the purposes of this exercise, a magnitude of 2 feet is selected as this is the central advertised
modeled depth in FEMA SFHA zones AO and AH.
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Table 3.4: Estimated value of flood-exposed vehicles (millions) [$]

State DM-SFHA DM-MFHA NSI-SFHA NSI-MFHA NSI-FSF-A NSI-FSF-B

(1) (2) (3) (4) (5) (6)

Top five states

Florida $68,172 $81,410 $67,214 $103,362 $59,840 $78,630
Texas $31,673 $49,465 $18,360 $34,207 $21,721 $32,878
California $23,357 $78,031 $14,992 $65,280 $44,084 $64,327
Louisiana $14,754 21,570 $11,325 $19,251 $15,831 $21,827
New York $11,368 $16,860 $7,075 $11,935 $16,242 $21,707

Bottom five states

Wyoming $270 $515 $223 $579 $927 $1,197
Maine $373 $428 $243 $315 $1,012 $1,481
Vermont $383 $474 $325 $448 $770 $1,191
Montana $691 $1,176 $574 $1,100 $2,315 $2,832
Idaho $759 $1,826 $610 $1,901 $2,979 $3,618

CONUS total $305,521 $529,841 $227,599 $493,461 $330,536 $467,586

Vehicle data source DM DM USACE NSI USACE NSI USACE NSI USACE NSI
Flood data source FEMA NFHL FEMA NFHL FEMA NFHL FEMA NFHL FSF-FM FSF-FM

from OLS results due to the non-linear nature of the link function. Results presented

in Table 3.5 represent estimated marginal effects of explanatory variables on the ex-

tensive margin regarding TA award receipt among IHP applications reporting vehicle

flood damage, evaluated in more detail below.

Results from the preferred specification are shown in column (6), with a reference

level scenario of an application submitted by an applicant with a reported household

income of $30,0001-$60,000 per year in a household of three individuals with no flood

insurance, no homeowners insurance, and zero inches of floodwater at the applicant’s

residence. This model includes disaster number fixed effects as well as county-year

fixed effects to control for unobserved heterogeneity in these groups which may be

correlated with both explanatory variables and TA award outcome. This preferred

specification predicts an applicant from the reference level values described above has

a 10% probability of receiving a TA award. Findings across specifications generally

indicate at a 0.01 significance level that applicants from households making $0 per

year were less likely to receive a TA award than similar applicants from the reference

level income category. In the preferred specification, the estimated probability of an

applicant from a household making $0 is approximately 1.6 percentage points lower
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than a similar applicant at the reference level values.22 As hypothesized in H3, this

suggests that while the majority of IHP applications in the sample originate from

households making <$30,000 per year–generally considered to be “low-income” by

Federal standards (US DOE, 2023)–the lowest-income applicants have a relatively

lower probability of receiving a TA award than low- and moderate-income households

with relatively higher incomes.

However, contrary to hypothesized results, applications from low-income house-

holds in the $1-$30,000 per year range appear to have significantly higher probability

of receiving a TA award relative to the reference level values as well as higher-income

applicants. For example, preferred estimates in Table 3.5 column (6) show that hold-

ing other reference level variables constant, an application from a household making

$1-$15,000 per year (low-income) is estimated to have a probability of receiving a TA

award that is approximately 14 percentage points higher than a similar application

from a household making $30,001-$60,000. On the higher end of the income distri-

bution, estimates indicate an applicant from a household making $120,001-$175,000

per year has a probability of receiving a TA award that is approximately 7.3 percent-

age points lower than an otherwise observably equivalent applicant making $30,001-

$60,000 per year. These findings imply that while the lowest-income applicants (i.e.,

applicants with no reported income) appear to have a marginally lower probability

of receiving a TA award than applicants in the $1-$60,000 per year range, applicants

making more than $60,000 per year appear to have significantly lower success rates

than lower-income applicants even when controlling for other factors. Thus, along

the extensive margin, having an income that is too low (i.e., $0) or too high (i.e.,

>$60,000 per year) may negatively impact TA award outcomes.

22This probability is calculated by adding the z-score associated with estimated baseline response
probability 0.10 produced by the specification in Table 5 column (6), -1.275, to the coefficient
estimate and deriving the value of the standard normal cumulative distribution function at this
z-score.
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Besides income, a number of other control variables are consistently correlated

with successful TA applications across specifications. Notably, while the preferred

specification does not indicate household size influences probability of receiving a TA

award among applications from households with two individuals or more, applications

from single-person households persistently are estimated to have relatively higher

probability of success. Interpretation of these results in the context of IHP program

design follows in Section 3.6. While specifications in Table 3.5 columns (1) through

(4) indicate a positive, statistically significant relationship between floodwater depth

at applicant residence and the response probability of interest, this association is not

present when county-year fixed effects are included in columns (5) and (6). These

results do not suggest floodwater depth at applicant residence to be a robust predictor

of TA award receipt. Last, applicants with homeowners insurance appear to have

lower probabilities of TA award success.

3.5.2.2 Intensive margin analysis

Table 3.6 presents results from the model specification shown in Equation (3.4)

with the same reference levels outlined in Section 3.5.2.1. While the previous section

analyzed factors influencing IHP TA application award outcomes along the extensive

margin, this section only focuses on the sample of 28,474 IHP applications which

received a TA award. The preferred specification is similarly shown in column (6), and

this model includes disaster number fixed effects and county-year fixed effects. Most

notably, estimates in column (6) indicate a positive correlation between applicant

household income and TA award amount at certain income levels. Specifically, model

results suggest an applicant coming from a household making $1-15,000 per year would

be expected to receive an award amount that is -16.3% (-22.1% to -10.0%, 95% CI)

and an applicant coming from a household making $15,001-$30,000 per year would

be expected to receive an award that is -9.9% (-15.2% to -4.3%, 95% CI) relative to a
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Table 3.5: Probit model results

Dependent Variable: Applicant received Transportation Assistance award >0? (1=yes; 0=no)
Model: (1) (2) (3) (4) (5) (6)

Explanatory variables
Household income: $0 -0.0105 -0.0310∗ -0.0897∗∗∗ -0.1101∗∗∗ -0.1067∗∗∗ -0.1060∗∗∗

(0.0173) (0.0174) (0.0177) (0.0189) (0.0341) (0.0342)
Household income: $1-$15,000 0.6610∗∗∗ 0.6370∗∗∗ 0.5548∗∗∗ 0.5627∗∗∗ 0.5756∗∗∗ 0.5759∗∗∗

(0.0115) (0.0115) (0.0121) (0.0129) (0.0446) (0.0447)
Household income: $15,001-$30,000 0.4412∗∗∗ 0.4309∗∗∗ 0.3787∗∗∗ 0.4051∗∗∗ 0.4128∗∗∗ 0.4131∗∗∗

(0.0117) (0.0118) (0.0120) (0.0128) (0.0260) (0.0261)
Household income: $60,001-$120,000 -0.3571∗∗∗ -0.3489∗∗∗ -0.2892∗∗∗ -0.3718∗∗∗ -0.3746∗∗∗ -0.3739∗∗∗

(0.0200) (0.0201) (0.0204) (0.0221) (0.0216) (0.0217)
Household income: $120,001-$175,000 -0.6000∗∗∗ -0.5852∗∗∗ -0.5002∗∗∗ -0.6477∗∗∗ -0.6488∗∗∗ -0.6486∗∗∗

(0.0569) (0.0570) (0.0575) (0.0630) (0.0531) (0.0531)
Household income: >$175,000 -0.4280∗∗∗ -0.4256∗∗∗ -0.3744∗∗∗ -0.4828∗∗∗ -0.4864∗∗∗ -0.4864∗∗∗

(0.0588) (0.0588) (0.0591) (0.0649) (0.0996) (0.0997)
Water level (inches) 0.0024∗∗∗ 0.0023∗∗∗ 0.0028∗∗∗ 0.0004∗∗ 7.84× 10−5 8.25× 10−5

(0.0002) (0.0002) (0.0002) (0.0002) (0.0004) (0.0004)
Household size: 1 (ref. = 3) – 0.1513∗∗∗ 0.1524∗∗∗ 0.1386∗∗∗ 0.1357∗∗∗ 0.1358∗∗∗

(0.0115) (0.0115) (0.0121) (0.0204) (0.0205)
Household size: 2 (ref. = 3) – 0.0134 0.0242∗∗ 0.0188 0.0168 0.0170

(0.0117) (0.0118) (0.0123) (0.0141) (0.0141)
Household size: 4 (ref. = 3) – -0.0057 -0.0055 0.0058 0.0039 0.0043

(0.0135) (0.0136) (0.0141) (0.0180) (0.0180)
Household size: 5 (ref. = 3) – -0.0341∗∗ -0.0369∗∗ -0.0160 -0.0142 -0.0140

(0.0161) (0.0162) (0.0169) (0.0185) (0.0185)
Household size: >5 (ref. = 3) – -0.0562∗∗∗ -0.0638∗∗∗ -0.0372∗∗ -0.0318 -0.0313

(0.0170) (0.0171) (0.0178) (0.0197) (0.0197)
Flood insurance? (ref. = No) – – 0.0864∗∗∗ -0.0149 -0.0068 -0.0071

(0.0145) (0.0155) (0.0350) (0.0350)
Homeowners insurance? (ref. = No) – – -0.3054∗∗∗ -0.2200∗∗∗ -0.2226∗∗∗ -0.2230∗∗∗

(0.0106) (0.0117) (0.0340) (0.0340)

Fixed effects
Disaster number No No No Yes No Yes
(County)*(application year) No No No No Yes Yes

Fit statistics
Observations 160,564 160,564 160,564 160,026 155,992 155,872
Pseudo R2 0.04919 0.05163 0.05765 0.13478 0.14258 0.14284

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

baseline applicant with household income of $30,001-$60,000 per year. Thus, among

TA awardees in this $1-$60,000 per year household income range, evidence suggests

household income may positively influence TA award amount.

Unlike results estimated along the extensive margin, water level at applicant

residence persists as positively associated with TA award amount across specifications

in Table 3.6. In the preferred model in column (6), estimates conclude a one-inch

increase in floodwater depth at an applicant’s residence is associated with a 0.7%

(0.5% to 0.9%, 95% CI) increase in TA award amount. Additionally, having flood
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insurance is estimated to increase a successful applicant’s award amount on average by

22.3% (12.8% to 32.8%, 95% CI) ceteris paribus while having homeowners insurance

is estimated to lead to a change in award amount of -9.7% (-14.4% to -4.7%, 95% CI)

ceteris paribus.

These results also provide compelling evidence to support the claim that H2

is true. It is important to note due to data limitations I am unable to analyze

the extent to which TA award amount correlates with magnitude of vehicle flood

damage, as information describing estimated vehicle flood damage is not available

in the FEMA data. Based on this analysis of award amounts and knowledge of the

key IHP objective to provide assistance to meet basic needs, it appears reasonable

to assume TA award amounts are lower than the whole dollar value of actual vehicle

flood damages.

3.6 Discussion

3.6.1 Policy implications

The findings above have direct and indirect relevance for public policy at multiple

levels of government, as well as for private vehicle owners and manufacturers. This

research demonstrates vehicles are widely-owned, economically-important assets with

considerable exposure to flood hazard. While hundreds of billions of dollars’ worth of

household vehicles are estimated to be in US floodplains, these assets are not covered

by the NFIP, a cornerstone program of the US Federal government’s flood mitigation

policy regime. The NFIP’s current landing page states:

Flood insurance is a separate policy that can cover buildings, the contents
in a building, or both, so it is important to protect your most important
financial assets — your home, your business, your possessions. (FEMA,
2023f)
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Table 3.6: OLS model results

Dependent Variable: Ln(Transportation award amount [$])
Model: (1) (2) (3) (4) (5) (6)

Variables
Household income: $0 -0.0798∗∗ -0.1179∗∗∗ -0.1088∗∗∗ -0.0493 -0.0207 -0.0231

(0.0407) (0.0406) (0.0406) (0.0381) (0.0316) (0.0317)
Household income: $1-$15,000 -0.4499∗∗∗ -0.5031∗∗∗ -0.4858∗∗∗ -0.2472∗∗∗ -0.1797∗∗∗ -0.1774∗∗∗

(0.0251) (0.0252) (0.0254) (0.0240) (0.0360) (0.0367)
Household income: $15,001-$30,000 -0.2596∗∗∗ -0.2862∗∗∗ -0.2704∗∗∗ -0.1394∗∗∗ -0.1032∗∗∗ -0.1040∗∗∗

(0.0260) (0.0259) (0.0260) (0.0238) (0.0307) (0.0309)
Household income: $60,001-$120,000 0.0838∗ 0.0890∗ 0.0568 -0.0766∗ -0.0661∗ -0.0626∗

(0.0503) (0.0505) (0.0505) (0.0448) (0.0340) (0.0341)
Household income: $120,001-$175,000 0.2917∗∗ 0.3139∗∗ 0.2538∗ 0.1314 0.1654 0.1592

(0.1364) (0.1353) (0.1360) (0.1341) (0.1747) (0.1733)
Household income: >$175,000 0.0988 0.0818 0.0445 0.0858 0.0694 0.0681

(0.1523) (0.1532) (0.1475) (0.1246) (0.1106) (0.1108)
Water level (inches) 0.0164∗∗∗ 0.0163∗∗∗ 0.0159∗∗∗ 0.0096∗∗∗ 0.0070∗∗∗ 0.0070∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0012) (0.0012)
Household size: 1 (ref. = 3) – 0.2217∗∗∗ 0.2233∗∗∗ 0.1417∗∗∗ 0.1095∗∗∗ 0.1054∗∗∗

(0.0236) (0.0236) (0.0219) (0.0241) (0.0240)
Household size: 2 (ref. = 3) – 0.1273∗∗∗ 0.1262∗∗∗ 0.0998∗∗∗ 0.0875∗∗∗ 0.0860∗∗∗

(0.0247) (0.0247) (0.0226) (0.0249) (0.0247)
Household size: 4 (ref. = 3) – 0.0216 0.0178 0.0441∗ 0.0602∗∗ 0.0588∗∗

(0.0286) (0.0286) (0.0262) (0.0274) (0.0271)
Household size: 5 (ref. = 3) – -0.0652∗ -0.0666∗∗ -0.0283 -0.0052 -0.0077

(0.0339) (0.0338) (0.0312) (0.0343) (0.0345)
Household size: >5 (ref. = 3) -0.0717∗∗ -0.0741∗∗ -0.0500 -0.0251 -0.0256

(0.0365) (0.0363) (0.0337) (0.0298) (0.0299)
Flood insurance? (ref. = No insurance) – – 0.3675∗∗∗ 0.2519∗∗∗ 0.2025∗∗∗ 0.2018∗∗∗

(0.0309) (0.0282) (0.0412) (0.0416)
Homeowners insurance? (ref. = No insurance) – – -0.0988∗∗∗ -0.1138∗∗∗ -0.1023∗∗∗ -0.1021∗∗∗

(0.0230) (0.0210) (0.0273) (0.0274)

Fixed-effects
Disaster number No No No Yes No Yes
(County)*(application year) No No No No Yes Yes

Fit statistics
Observations 28,474 28,474 28,474 28,474 28,474 28,474
R2 0.10215 0.10784 0.11170 0.26868 0.33278 0.33527

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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While this language refers to households’ “most important financial assets,” ve-

hicles are omitted from NFIP coverage despite the financial importance of vehicle

assets as demonstrated in Figures 3.1 and 3.2. While the author speculates the

prospects for changes at the Federal level that would make vehicle assets eligible for

coverage under the NFIP are dim at best in the near term given many criticisms of

the program, including some critics recommending program privatization (Born &

Klein, 2019; Horzempa, 2018), a contribution of this work is to highlight the gap in

resources supporting financial resilience vis-à-vis vehicle asset owners in the wake of

flood exposure. To reduce financial vulnerability to vehicle flood damage, Figure 3.5

demonstrates vehicle owners are well-advised to be aware of the scope of coverage

provided by available auto insurance policies. The statistics about IHP TA appli-

cations and awards in Table 3.1 demonstrate there is a vehicle flood insurance gap

that is partially filled by FEMA in the wake of presidentially-declared disasters or

emergencies, however no such Federal assistance is available for vehicle owners signif-

icantly affected by flood events that do not receive presidential declarations, nor to

ineligible applicants in disaster areas. In these cases, vehicle owners without insur-

ance or disaster assistance are likely to bear the financial shock without resources to

support recovery. Figure 3.2 demonstrates this financial shock may be particularly

substantial for low-wealth vehicle-owning households.

Previous research with a focus on housing also indicates property owners, on

average, tend to purchase less insurance after receiving Federal disaster assistance

through FEMA’s IA programs (Kousky et al., 2018), implying the potential for moral

hazard implications. It is possible disaster assistance similarly crowds out vehicle

owners from purchasing comprehensive auto insurance coverage, however, limited data

availability describing spatially-explicit comprehensive auto insurance policies and

related flood-specific claims makes analysis of this topic difficult. While the National

Flood Insurance Reform Act of 1994 requires applicants to purchase NFIP coverage
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for eligible property if they reside in a SFHA as a condition of receiving certain types

of IA Federal assistance, no such requirement appears to exist for comprehensive

auto insurance and vehicle owners who reside in SFHAs in order to receive IHP TA

in connection with vehicle flood damage (FEMA, 2021).

Analysis of FEMA IHP TA applications and awards suggests the program is

generally serving populations in alignment with the program objective to “meet basic

needs and supplement disaster recovery efforts” when considering vehicle flood dam-

ages (FEMA, 2021). More than 70% of IHP TA applicants with vehicle flood damage

came from households with household incomes less than $30,000 per year, and con-

trary to what had been speculated in H3, more than 80% of TA awards were disbursed

to applicants in this income bracket. Significantly lower award rates among appli-

cants from higher-income households, as well as relatively higher award rates among

applicants from single-person households, implies the program prioritizes awards to

individuals and households who are unable to meet necessary expenses and/or serious

disaster-caused needs through other means (e.g., alternative vehicle in the household)

(Stafford Act, 2019). However, relatively lower probability of receiving a TA award

among no-income applicants, as compared with low-income applicants, suggests some

of the most financially vulnerable households do not benefit from TA awards (e.g.,

due to insufficient documentation or insurance coverage per state legal requirements),

possibly making post-flood recovery for these applicants difficult.

This work also highlights data limitations which constrain empirical analysis

examining issues related to vehicle flood risk. The FEMA IHP data received via

FOIA provide some initial insight into the scale and scope of vehicle flood damages

in the US, however the FEMA IHP data do not provide detailed information about:

1. type of vehicle that experienced flood damage, 2. depth and duration of vehicle

flood exposure, and 3. total amount of vehicle flood damages. Since TA awards are

only designed to meet basic needs, award amounts are not intended to represent total
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vehicle flood damage experienced. Further, widespread missing data on applicants’

compliance with insurance and registration requirements limits opportunities to ana-

lyze the mechanisms of TA ineligibility. Thus, to enable researchers to produce more

valuable insight into issues pertaining to vehicle flood damage and related financial

resilience gaps, FEMA might collect, maintain, and disseminate more detailed infor-

mation about IHP applications reporting vehicle flood damages. Further, insurers

and the NAIC might publicly share peril-specific information about comprehensive

auto insurance uptake and flood-specific comprehensive insurance claims to increase

visibility of insurance gaps in flood-prone areas and/or vehicle flood damage hotspots

to inform affected parties as well as potential future policy design.

Last, while research in the residential sector has found flood risk disclosure laws

influence risk-aware buyers’ decisions such that more efficient market outcomes occur

(Hino & Burke, 2021), no such flood risk disclosure laws exist for the millions of vehicle

buyers living in SFHAs. Flood risk disclosure at the time of vehicle purchase may be

particularly relevant and welfare-enhancing for vehicle-owning renter households, as

this segment of the population often does not benefit from existing disclosure laws

applicable to sellers and buyers of residential property.

3.6.2 Limits and future work

The present study provides novel insight into vehicle flood exposure at the na-

tional level in the US, as well as detailed policy-relevant empirical analysis of FEMA

IHP applications reporting vehicle flood damages. However, there are a number of

important limitations of the research worth highlighting to contextualize inference

and inform future research. First, as noted above, data limitations hamper precise

estimates of the number and value of vehicles in US floodplains. Without vehicle-level

observational data that are spatially- and temporally-precise, a perfectly-accurate ac-

counting of the number and value of vehicles in US floodplains remains unattainable.
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In the the absence of these data, the dasymetric mapping technique approximates the

number of vehicles in FEMA-defined floodplains. In addition to incorporating richer

remote sensing data, future work may employ the dasymetric mapping technique with

more granular assumptions about the density of vehicles within US floodplains (as

opposed to relying on the assumption that household vehicles are equally distributed

across developed areas), as well as vehicle composition, value, and parking elevation.

Second, a key uncertainty that is not comprehensively addressed in this research

is the “retreat” hazard mitigation behavior adopted by vehicle owners before and

during flood events. Scholars have long noted the potential for timely warning infor-

mation to enable adaptive action that can reduce flood damages (Day & Lee, 1976),

however the extent to which vehicle owners avoid vehicle flood damage, with and

without warning information, is a fertile area for future research. While some studies

have assumed 100% of vehicle assets in a given study area would avoid flood damage

due to vehicles’ mobility (Genovese, 2006), the present chapter’s findings demonstrate

such assumptions are empirically unjustified. While the above study does not assume

a specific avoidance rate among vehicles estimated to be in flood-prone areas, and

such an avoidance rate is not included in FEMA’s Hazus model (FEMA, 2021) nor

USACE’s Hydrologic Engineering Center Flood Damage Reduction Analysis (HEC-

FDA) tool (USACE, 2016), future work to credibly estimate such a rate may be valu-

able to place more precise bounds on estimates of aggregate vehicle flood risk, and

may also inform broader risk reduction actions. Conversely, given the CDC’s statistic

indicating a plurality of flood deaths in the US occur in vehicles (CDC, 2020), in the

future it may also be worthwhile to explore the extent to which motorists drive into

flood-prone areas or already-flooded areas, which represents an understudied dimen-

sion of flood risk. Thus, given the dynamic and mobile nature of flood hazard and

vehicles, it will be a challenge for future empirical researchers to precisely estimate
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the flow of vehicles entering and exiting flooded areas, in addition to estimating the

aggregate number of vehicles in flood-prone areas.

When considering research limits and potential future work, it is also essen-

tial to highlight the role of technological advancements to potentially influence fu-

ture vehicle flood damages. Entrepreneurial manufacturers in the auto sector have

hinted at development of automobiles with amphibious capabilities for the general

consumer market (Beckford, 2022), which may facilitate in-situ adaptation, a pre-

ferred pathway for many residents in flood-prone areas (Seeteram et al., 2023). The

growing autonomous vehicle (AV) market also raises important questions about AV

programming, responses, and potential regulation with respect flood hazard mitiga-

tion (Schwarting et al., 2018). Figure 3.3 only represents depth-damage relationships

for flood-affected vehicles containing internal combustion engines, therefore as we look

to the horizon, more work is needed to understand the depth-damage relationship for

electric vehicles as these vehicle assets grow in market share. As both flood hazards

and private passenger vehicle markets evolve in conjunction with forces shaped by cli-

mate change, scholarship at this important nexus can inform policy design to support

safe and economically-efficient development of transportation assets.

3.7 Conclusions

Vehicles are a widely-owned and economically-important household asset. At the

same time the number of vehicles in the US is growing in both absolute and per capita

terms, anthropogenic climate change and urban development patterns are increasing

the intensity and extent of flooding across the country. While a wide array of infor-

mative research has analyzed the exposure of real estate, such as residential property,

to flood hazard, this study is the first to estimate the extent of flood exposure of

vehicle assets in the US.
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Using a dasymetric mapping technique as well as spatial matching algorithm,

vehicle-related data from the USCB, KBB, and USACE NSI are integrated with

flood mapping products from FEMA and FSF to estimate the number and value of

vehicles in US floodplains. Dasymetric mapping results find an estimated 13.1 million

household vehicles worth over $300 billion are located in FEMA-designated SFHAs,

with 5.2 million of these vehicles located in census tracts defined by the US Federal

government as “socially vulnerable.” Results are robust to alternative methods and

data sources representing geolocated vehicle value and flood exposure; using flood

depth and probability outputs from the FSF-FM and USACE NSI estimates of ge-

olocated vehicle value in CONUS, an estimated $330.5 billion worth of vehicle assets

are based at sites with “major flood risk.” Florida emerges as the US state estimated

to have the greatest number and value of vehicles in floodplains, with main estimates

finding approximately 2.9 million vehicles worth nearly $70 billion located in FEMA

SFHAs. Results suggest a large quantity of household vehicles at sizable aggregate

value are located in US floodplains.

The study further undertakes a first-of-its-kind analysis of FEMA IHP appli-

cation data obtained through a FOIA request to better understand the scale and

magnitude of vehicle flood damages and related disaster assistance in the US. Sum-

mary statistics as well as statistical analyses using Probit and OLS models examine

the population of IHP applicants reporting vehicle flood damage in connection with

presidentially-declared disasters or emergencies. Between 2007-2022, FEMA received

at least 160,565 IHP applications reporting vehicle flood damage, with more than

70% of applications originating from households making less than $30,000 per year.

28,474 TA awards were disbursed in connection with vehicle flood damage cases, more

than 80% of these to applicants from households making less than $30,000 per year.

While fewer than one in five applications for TA received an award, the median award

amount was $5,000, resulting in more than $131 million awarded by FEMA’s IHP to
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address uninsured vehicle flood damages from 2007-2022. When considering IHP ap-

plication outcomes, findings indicate households making $1-$30,000 per year had the

highest estimated probability of success among all income groups when controlling for

other factors, suggesting the IHP program is generally meeting its objective of serving

populations who are otherwise unable to meet necessary expenses and/or serious dis-

aster caused needs. However, results also indicate applicants reporting no household

income have relatively lower probability of receiving a TA award than observably

equivalent low-income (non-zero income) applicants. This suggests that while the

IHP is designed to facilitate recovery post-disaster for individuals and households of

limited means, inability to meet basic eligibility requirements may disqualify the most

financially vulnerable applicants from receiving disaster assistance following a vehicle

flood damage event.

There are a number of policy implications from this work. First, while the FEMA

IHP data received through FOIA provide valuable insight, granular publicly-available

data on comprehensive auto insurance policies and claims, as well as detailed informa-

tion about individuals and households receiving taxpayer-funded Federal assistance

in connection with vehicle flood damages following a presidentially-declared disaster,

are generally limited. Given the absence of such data sources through which to empir-

ically examine comprehensive auto insurance uptake rates with geographic precision,

or incidence of insured and uninsured vehicle flood damages, observation-based esti-

mates bounding the scale of vehicle flood risk in the US prove elusive. While FEMA

IHP data provide some insight into the issue of vehicle flood damages, information

about the precise magnitude of flood damages, vehicle type, and vehicle location are

all missing from the FEMA data set. More robust publicly-available data on insured

vehicle flood damages and uninsured vehicle flood damages for which Federal disaster

assistance is disbursed would inform vehicle owners, insurance professionals, trans-
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portation planners, and policymakers about the scale and scope of this issue, toward

improving behavior and policy design for vehicle flood risk mitigation.

Second, this work highlights IHP TA application outcomes relative to program

goals and the broader apparatus of Federal hazard mitigation programs. Despite

being an economically-important asset for many households, vehicles are not covered

by the NFIP; in the absence of comprehensive auto insurance coverage, IHP TA is

a key source of Federal financial assistance responding to uninsured vehicle flood

damages following a presidentially-declared disaster or emergency. However, IHP

resources are unavailable following non-disaster flood events, and such flood events

still have the potential to cause substantial damage to vehicles. Additionally, most

IHP applicants reporting vehicle flood damages do not receive a TA award, and

TA awards are designed to meet basic needs, not serve as an insurance substitute.

Thus, while IHP TA provides some financial resilience to affected uninsured vehicle

owners in the wake of large-scale flood events, considerable financial resilience gaps

remain for the nearly one-third of motorists in the US estimated to lack comprehensive

coverage. These findings suggest policies that promote higher penetration of private

insurance coverage, greater awareness of vehicles’ flood vulnerabilities to incentivize

vehicle flood exposure avoiance, or expanded public resources to support recovery for

uninsured flood-affected vehicle owners, may be considered to close financial resilience

gaps in flood-prone communities.

Last, given the concurrent and converging trends of the number of vehicles on the

road in the US increasing along with growing flood exposure due to climate change

and urban development patterns, it is likely new adaptation solutions driven by tech-

nological advancements or public policy interventions may emerge to mitigate vehicle

flood risk. Policy interventions, such as education campaigns or flood disclosure laws,

might empower vehicle owners and drivers with information that enables them to mit-

igate vehicle flood exposure and/or vulnerabilities. Further, technological advances
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such as improved warning systems or vehicles with amphibious or autonomous ca-

pabilities may similarly reduce vehicle flood risk by bending depth-damage curves

downward or facilitating vehicle flood avoidance altogether. As the household vehicle

market continues to develop in a world of growing climate risks, it will be critical for

manufacturers and owners of new generations of vehicles entering the market, such

as AVs and EVs, to consider these vehicles’ resilience in the face of a more intense

hydrological cycle.



CHAPTER 4

The willingness to pay for vehicle flood
insurance
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4.1 Introductory remarks

As established in Chaper 3, the mobile nature of vehicles does not preclude

vehicle assets from adverse impacts caused by flood hazard exposure. While vehicle

owners may exploit vehicles’ mobility to avoid or mitigate flood hazard exposure

and related damages, employing what may be referred to as a form of the “retreat”

hazard risk mitigation strategy (Mach et al., 2019), findings from Chapter 3 indicate

uninsured vehicle flood damage cases occur with significant frequency in the US.

In addition to disaster assistance, risk-pooling in the form of insurance products is a

common mechanism through which individuals can mitigate adverse financial impacts

from disasters (Kousky, 2022).

While a large and insightful literature evaluates myriad aspects of flood insur-

ance in the context of residential property (Bradt et al., 2021; Browne & Hoyt, 2000;

Chivers & Flores, 2002; Hino & Burke, 2021; Kousky, 2018; Kousky & Michel-Kerjan,

2017; Kousky et al., 2018; Landry & Jahan-Parvar, 2011; Pralle, 2019; Shr & Zipp,

2019; Wing et al., 2020), little attention has been paid to insurance literacy, uptake,

and recovery outcomes with respect to vehicle flood damage cases. Similarly, engi-

neering scholars have documented the hydrodynamic conditions under which vehicles

lose stability (Mart́ınez-Gomariz et al., 2018; Xia et al., 2014) as well as flood-vehicle

depth-damage relationships (Mart́ınez-Gomariz et al., 2019; USACE, 2009), though

no dollar estimates of actual sustained vehicle flood damages are available in the

academic literature, perhaps due to some of the data limitations outlined in Chapter

3.

This chapter advances the hazard mitigation, climate adaptation, and insurance

literatures by eliciting novel information from vehicle owners in coastal New York

and Texas about their vehicle flood damage experiences and vehicle flood insurance

preferences. The present study draws on existing survey methods and contingent

valuation literature. At least three main contributions are made through the anal-
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ysis. First, in the absence of accessible disaggregated flood-specific comprehensive

auto insurance policy and claims information, this study is the first to produce esti-

mates of coastal vehicle owners’ willingness-to-pay (WTP) for a single-peril vehicle

flood insurance product not currently offered on the general insurance market. Sec-

ond, this study provides new information about coastal vehicle owners’ literacy and

knowledge regarding currently-offered insurance policies covering flood damage in the

auto insurance market. Third, to shed light on the scope and magnitude of vehicle

flood damages experienced by coastal vehicle owners, new information about vehicle

owners’ vehicle flood damage experiences is elicited and analyzed.

The objective of this research is to produce knowledge that informs vehicle own-

ers, insurers, and policymakers toward the ultimate goal of strengthening vehicle

owner financial resilience in the face of expanding and intensifying flood exposure.

Developing a foundational understanding of the scope of vehicle flood damages, insur-

ance literacy levels, and consumer preferences among coastal vehicle owners can help

achieve better risk management decisions for vehicle-owning households, particularly

those with limited wealth. Section 4.2 analyzes relevant public laws and policies in

the United States (US) which serve as the legal foundations on which auto insurance

markets operate. The analysis in this section motivates the data collection process.

Section 4.3 describes the study area, which is comprised of 39 zip codes in coastal

New York and Texas, and justifies this area’s selection. Section 4.4 provides a detailed

account of the sampling strategy, contingent valuation methodology motivation, and

survey instrument design which took place before deploying the survey to coastal

vehicle owners in New York, NY and Houston, TX area. In Section 4.5, information

about respondents’ vehicle flood damage experiences and WTP for a hypothetical

single-peril vehicle flood insurance product, among other survey insights, are statisti-

cally analyzed and interpreted. Section 4.6 contextualizes survey findings within the
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wider public policy and insurance market contexts, as well as within related academic

literature. Section 4.7 contains the chapter’s conclusion.

4.2 An overview of vehicle flood insurance cover-

age and public policy foundations

The body of scholarship on flood insurance in the housing sector highlights a

number of relevant impediments to insurance penetration among residential property

owners, which may be instructive when considering vehicle flood insurance. First,

flood insurance affordability is a key determinant of uptake in the residential sector

(Atreya et al., 2015; Dixon et al., 2017). Dixon et. al (2017) conducted a sur-

vey in a study area which largely overlaps with the New York portion of this chap-

ter’s study area, and found, despite positive income elasticity, flood insurance uptake

rates are lower in areas where households are relatively cost-burdened by housing

expenses. Thus, while homeowners may be interested in purchasing flood insurance

to strengthen their financial resilience in the face of potential flood hazard exposure,

budget constraints may inhibit uptake (Netusil et al., 2021). Similarly, empirical in-

vestigation of auto insurance markets in the US has found auto insurance, including

comprehensive coverage, exhibits the positive elasticity of a “normal good” (Sherden,

1984), however insurance penetration gaps persist. These empirical findings imply ve-

hicle owners, like homeowners, may face similar flood-related insurance affordability

challenges if their household budget constraints are salient.

Second, insurance literacy gaps may lead to relatively poor insurance penetra-

tion and financial vulnerability. A WTP elicitation study by Kousky et al. (2023)

in Oregon empirically examines this issue in the context of housing, and finds that

a sizable percentage of homeowners in their sample, approximately 38%, were un-

aware their homeowners insurance policies did not cover flood damage (Kousky &
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Netusil, 2023). Homeowners insurance, like comprehensive auto insurance, is typically

a multi-peril policy covering damages from perils such as fire, wind, and vandalism,

but not flooding. Kousky et al.’s (2023) results found homeowners in Federal Emer-

gency Management Agency (FEMA) Special Flood Hazard Areas (SFHA) were more

knowledgeable about the scope of homeowners insurance and flood insurance cover-

age than homeowners outside SFHAs, which is perhaps the result of lender and agent

communication, or other learning mechanisms such as past flood experiences. The

issue of flood insurance literacy is highlighted by Kousky et al. (2023) as important

for optimal risk management, however no study to date has focused on vehicle owner

insurance literacy with respect to comprehensive auto insurance and flood hazard.

This chapter intends to advance the flood insurance literacy literature by eliciting

relevant information from coastal vehicle owners on the subject.

Figures 3.5 and 3.6 above, as well as discussion in Section 3.6.1, provide an intro-

duction to the flood insurance landscape for vehicle assets. As mentioned, FEMA’s

National Flood Insurance Program (NFIP) does not offer flood insurance coverage to

vehicle assets (FEMA, 2022). As a result, the market for auto insurance that covers

against flood damages is entirely private, and vehicle owners seeking coverage against

vehicle flood damage must purchase a comprehensive auto insurance policy from an

insurance company in this private market. An estimated 31% of motorists on the

road in the US do not have comprehensive coverage, though data on comprehensive

auto insurance uptake are not publicly-available at a spatial scale more granular than

the state level. As previously noted, the average annual price of a multiple-peril com-

prehensive auto insurance policy in the US in 2020 was $174.26, with state averages

ranging from $97.26 to $353.10 per year (III, 2023a). No US state requires com-

prehensive coverage in their minimum insurance requirements, however individuals

financing a vehicle are typically required by their lender to take out a comprehen-

sive auto insurance policy (Progressive Insurance, 2023). More than one-third of US
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families had an outstanding auto loan in 2022 (Fed SCF, 2022), which suggests a

substantial number of vehicles in the US likely have comprehensive coverage due to

lender requirements.

Chapter 3 highlights FEMA disaster assistance may extend financial resources

to eligible individuals in the wake of uninsured vehicle flood damages, however such

disaster assistance is unavailable in many cases, implying the critical role of insur-

ance to provide financial resilience against vehicle flood damages, particularly among

households with limited financial means. Insurance firms and the markets in which

they operate are generally regulated at the state level in the US. This configuration is

largely underpinned by the McCarren-Ferguson Act of 1945 (Macey & Miller, 1993),

which broadly exempts insurance firms from Federal regulation. As a result, the

insurance regulatory regime in the US is comprised of a constellation of state govern-

ment agencies (e.g., Florida Office of Insurance Regulation [FLOIR], New York State

Department of Financial Services, etc.) which have heterogeneous organizational

structures and mandates given different state laws governing insurance markets. Gen-

erally, state insurance regulators aim to regulate insurance prices and policies such

that they are not excessive, inadequate, unfairly discriminatory, competition-eroding,

or financially irresponsible.

Common interests among the various state insurance regulators has led to the

creation of the National Association of Insurance Commissioners (NAIC), a 501(c)(3)

standard-setting organization governed by chief insurance regulators from the 50 US

states, the District of Columbia, and five territories. The organization serves as a

forum supporting regulatory excellence that provides expertise, data, and coordina-

tion across states. NAIC provides periodic reports and proprietary data access for a

fee (NAIC, 2023), however national-scale analysis of comprehensive insurance policies

and flood-specific claims is challenging given fragmented data governance and other

barriers to access. The challenges of analyzing comprehensive auto insurance uptake
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and flood-related claims are distinct from challenges analyzing FEMA-maintained

NFIP data, as shown in Table 4.1. The two markets for flood insurance covering key

household assets contrast across regulatory environments, composition of insurers

(FEMA, 2023d; Honka, 2014), rate-setting protocols, data governance, and covered

asset characteristics. In the absence of publicly-available, peril-specific, centrally-

maintained, spatially-explicit insurance policy and claims data with wide geographic

coverage focused on the auto insurance market, the present study aims to fill an

existing epistemic gap in the academic literature by explicitly eliciting information

from coastal vehicle owners in urban areas about their experienced vehicle flood dam-

ages and WTP for a single-peril vehicle flood insurance policy. The following section

describes the study area, including motivation for its selection, while Section 4.4 pro-

vides information about the survey instrument which aims to fill the aforementioned

epistemic gap.

Table 4.1: Comparison of FEMA NFIP structure, contents insurance coverage and private com-
prehensive auto insurance coverage.

FEMA NFIP Comprehensive auto insurance

Covered asset type(s) 1. Structures 1. Motor vehicles
2. Contents of structures

Level of regulation Federal State/territory

Spatial unit of pricing FEMA flood zone Rating territories (varies by state)

Scope of perils covered Single-peril (flood) Multiple-peril (e.g., flood, fire, vandalism)

Parties required to 1. Holders of Federally-backed mortgages in SFHAs 1. Lessees
have coverage 2. Recipients of Federal disaster assistance in SFHAs 2. Holders of auto loans

Authoritative data source(s) 1. Insurers 1. Insurers
2. FEMA 2. State insurance commissioners

3. NAIC

4.3 Study area

The study area is comprised of 39 coastal zip codes in the New York City region

and the Houston, TX region, including the Beaumont-Port Arthur metropolitan area,

covering a total estimated population of approximately 1.19 million individuals across
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an estimated 420,271 occupied housing units according to 2021 US Census Bureau

(USCB) American Community Survey (ACS) five-year estimates (United States Cen-

sus Bureau, 2023). Figures 4.1 and 4.2 show the 13 zip codes in New York and 26 zip

codes in Texas included in the study. These zip codes were identified based on three

selection criteria measuring: 1. incidence of vehicle flood damages, 2. population,

and 3. vehicle ownership rate. Incidence of vehicle flood damages were assessed based

on data used in Chapter 3, specifically the cumulative number of FEMA Individuals

and Households Program (IHP) applications reporting vehicle flood damages received

from residents residing in each zip code between 2007-2022. The total number of IHP

applications reporting vehicle flood damages for each sample zip code are shown in

Table 4.2, with the number of IHP applications submitted from each zip code ranging

from 135 to 2,818.23 Table 4.2 also shows the estimated populations and shares of

households owning a vehicle in sample zip codes. Figure 4.3 shows the total number

of FEMA IHP applications reporting vehicle flood damage in New York study area

zip codes in connection with Hurricane Sandy as a percentage of the total estimated

number of household vehicles available in the zip code in 2013.24 This figure indicates

that in some zip codes, more than 10% of household vehicles may have been damaged

by flooding and have been correspondingly connected to a FEMA IHP application

submission. Nearly 17% of all FEMA IHP applications reporting vehicle flood dam-

age across the 2007-2022 period came from the 39 zip codes in the sample. Unlike

the New York zip codes, FEMA IHP applications from the 26 zip codes in Texas were

largely spread across two major flood events: Hurricane Ike (2008) and Hurricane

Harvey (2017).

23For comparison, the median number of IHP applications reporting vehicle flood damage at the zip
code level in the full sample of 160,565 applications described in Chapter 3 was 12.

24FEMA IHP applications from these 13 zip codes in New York were submitted in 2012 and 2013,
with most applications submitted in 2012. Of the 9,970 FEMA IHP applications reporting vehicle
flood damage across New York state in connection with Hurricane Sandy (2012), approximately
76% of applications originated from these 13 zip codes.
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Table 4.2: Selection criteria variable values and number of survey respondents by study area zip
codes.

Texas study area New York study area

Zip # of # of IHP Estimated Estimated share Zip # of # of IHP Estimated Estimated share
code respondents applications population of households code respondents applications population of households

(2021) with a vehicle (2021) with a vehicle
77013 6 352 19,296 0.91 10305 8 218 44,531 0.81
77016 13 484 30,252 0.91 10306 25 566 55,805 0.85
77022 7 403 26,472 0.86 11224 6 961 48,110 0.47
77026 14 577 21,412 0.82 11235 27 924 84,859 0.52
77028 7 490 19,506 0.90 11236 15 599 102,238 0.65
77032 6 237 13,887 0.85 11414 10 486 30,915 0.87
77033 17 298 28,669 0.90 11558 2 302 8,758 0.94
77037 2 413 18,106 0.96 11561 12 941 39,140 0.91
77044 17 574 53,753 0.97 11572 13 251 29,791 0.95
77060 6 1,288 47,349 0.86 11691 12 701 70,797 0.57
77078 8 416 13,738 0.90 11692 4 541 24,639 0.61
77091 5 327 30,008 0.86 11693 5 461 14,147 0.67
77514 3 135 5,818 0.99 11694 1 665 22,432 0.79
77539 16 1,380 45,901 0.97
77550 6 2,441 22,421 0.84
77551 11 2,818 23,686 0.91
77554 1 720 9,001 0.98
77563 4 484 10,223 0.95
77565 1 258 6,555 0.99
77586 6 383 23,364 0.98
77611 2 1,573 9,829 1.0
77630 15 1,612 29,480 0.93
77640 6 397 17,579 0.88
77642 18 839 37,881 0.90
77701 10 180 12,930 0.85
77705 13 557 40,947 0.90
Total: 220 19,636 618,067 0.91 Total: 140 7,616 576,162 0.69

Second, the population of each zip code was evaluated using 2021 USCB ACS

five-year estimates of the estimated total population, also shown in Table 4.2. The

average sample zip code had an estimated population of more than 30,000 residents

in 2021, with the least and most populous zip codes in the sample having estimated

populations of 5,818 and 102,238, respectively. Third, the estimated household ve-

hicle ownership rate in the study area was 80.1% in 2021, a rate slightly lower than

a credible recent estimate of the national household vehicle ownership rate of 85%

(Bhutta et al., 2020). Sample zip codes’ estimated household vehicle ownership rates

ranged from 47% to nearly 100%. Each of the zip codes included in the sample are

thus known to experience vehicle flood damages, as evidenced by their IHP TA ap-

plications, and also have sizable urban populations with significant vehicle ownership

rates. These selection criteria make these zip codes a fertile area to study the atti-

tudes, experiences, and preferences of coastal vehicle owners residing in flood-prone

coastal communities.
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Figure 4.1: 13 New York zip codes in survey study area
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Figure 4.2: 26 Texas zip codes in survey study area
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Figure 4.3: New York zip codes in study area - vehicle flood damage impacts of Hurricane Sandy (2012)
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4.4 Methods

4.4.1 Sampling strategy

The general population of interest in this study is coastal vehicle owners residing

in areas prone to flood hazard exposure. The study area outlined in the previous

section was selected to serve as the specific population of interest. There are three

main criteria needed to determine the appropriate sample size when collecting survey

data to infer population parameters from a sample: confidence level, precision level,

and degree of variability of the population parameter(s) of interest (Iarossi, 2006;

Israel, 1992). Two of these criteria, confidence level and precision level (sometimes

referred to as “sampling error”), are selected by the researcher, while some empirical

basis is needed for the degree of variability in order to reasonably determine the

appropriate sample size. Below are two formulas from Iarossi (1992), which guide

sample size calculations and inference for both population proportions and population

means. Please note the terms in these equations are distinct from previous notation

(i.e., are not recycled from above).

n =
z2α

2
P (1− P )

e20 + z2α
2

P (1−P )
N

(4.1)

and

n =
z2α

2
S2

e20 + z2α
2

S2

N

(4.2)

where:

N = population size

n = sample size

S2 = population variance of parameter of interest

P = population proportion parameter of interest
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e0 = desired level of precision (i.e., sampling error)

α = desired level of confidence (e.g., 95%)

zα

2
= z distribution (i.e., standard normal distribution) corresponding to α level of

confidence

When considering Equation (4.1), a hypothetical population proportion of 50%

generally requires a larger sample size to produce population parameter estimates

of the same confidence interval and sampling error as smaller or larger proportions.

In the present study, assuming a conservative population proportion of 50% and

a sample size of 360 respondents (the full sample size eventually analyzed in the

study), estimates of population proportions in the study area would be characterized

by precision error of approximately 5.2 percentage points with a 95% confidence

interval. Such estimates take into account uncertainty resulting from both natural

variation in the population as well as sampling error which may be present in the

sampling procedure.

Equation (4.2) similarly provides insight into the appropriate sample size needed

to reliably estimate a population mean at specified confidence level and precision

level, based on the population size and parameter’s variance. For certain population

means (e.g., average vehicle market value, average maximum vehicle flood damages

experienced) referenced in the study, variance parameters are unavailable from the

original data source. In these cases, the standard deviation of the sample mean is

used as the estimator for the true population variance (Linton, 2017).

Among potential respondents in the study area, two main filtering criteria were

applied. First, only respondents stating they own a vehicle are offered the survey.

Second, respondents must state they are a current resident of one of the 39 sample

zip codes enumerated in Table 4.2, and they must have continuously lived in the zip

code for a minimum of one year at the time of survey completion. These screening
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measures were implemented to ensure the survey instrument elicits information about

issues related to vehicle ownership and flooding from members of the population of

interest.

4.4.2 Contingent valuation

To understand consumers’ preferences and estimate their WTP for a good or ser-

vice, researchers often employ revealed preferences and/or stated preferences methods

(Kroes & Sheldon, 1988). While revealed preference approaches, such as the hedonic

pricing estimations conducted in Chapter 2, exploit observed behavior (e.g., pur-

chasing decisions) to make inferences about consumer preferences, stated preferences

methods may be suitable in cases where revealed preference methods are unavailable

due to interest in conditions, goods, or services which do not exist. In the absence

of available data revealed by market transactions, contingent valuation methods re-

lying on survey instruments may be used to estimate the value of non-market goods

(Carson, 2000). In the case of this present study, the primary good of interest is a

single-peril vehicle flood insurance product, which is currently not commonly available

on the auto insurance market.

The primary estimation procedure used by this study to generate WTP bounds

employs a utility-differencing approach with binary response model generally guided

by M. Hanemann (1984) and Carson and Hanemann (2005). A brief explanation of

the theoretical basis for this approach follows. To represent vehicle flood insurance

coverage, the term I is introduced where I = 1 if an individual has a single-peril

vehicle flood insurance policy and I = 0 if they do not. The individual’s income

is denoted by Y ; other observable characteristics pertaining to the individual are

denoted by the vector X ; and the vector of market prices the individual faces in their

consumption decisions is represented by P. The general form of the individual’s utility

function if they have a single-peril vehicle flood insurance policy is u1 = u(1, Y, P;
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X), where utility u1 is a function of the individual’s income, the market prices they

face, and their consumption of a single-peril vehicle flood insurance policy given a set

of observed characteristics, X. When an individual does not have such an insurance

policy, their utility function may generally be described as u0 = u(0, Y, P; X).

Hanemann (1984) observes that since the “econometric observer” cannot observe

the true utility function, one must introduce a stochastic component to account for

unobservable characteristics. To do so, u0 and u1 are viewed as random variables

with probability distributions, and means w(0,Y, P;X) and w(1, Y, P; X). Thus,

u(I, Y, P ;X) = w(I, Y, P ;X) + ǫI (4.3)

where ǫI is an independent and identically distributed random variable with mean

zero. When faced with a price, C, for a single-peril vehicle insurance policy covering

flood damage, an individual is assumed to pay the price if:

w(1, Y − C, P ;X) + ǫ1 > w(0, Y, P ;X) + ǫ0 (4.4)

Following this result, we assume the WTP for a single-peril vehicle flood insurance

policy can be written as wi(Ii, Yi, P ) = Xiβ + ǫi where the price vector P captures

exogenous variation in insurance product prices. The individual’s response probability

with respect to WTP is then represented by:

Pr(individual willing to pay) = Pr[w(1, Y −C, P ;X)+ǫ1 > w(0, Y, P ;X)+ǫ0] (4.5)

Equation (4.4) may also be enumerated:

Pr(V>C) = 1−GV (C) (4.6)
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where V is the individual’s maximum WTP for the vehicle flood insurance prod-

uct and GV (.) is the cumulative distribution function of V across the population

of interest. As observed by Carson & Hanemann (2005), the introduction of the

stochastic component into the utility model leads to a WTP distribution that is then

linked to a binary response probability distribution that assumes utility-maximizing

responses from survey participants. Per Carson & Hanemann (2005), the binary re-

sponse model can be interpreted as the survivor function of the WTP distribution

if it is assumed the “yes” and “no” survey responses are aligned with an economic

model of utility maximizing behavior. In the following analysis, main model results

leverage a Box-Cox random utility model (RUM) that assumes the error term oper-

ates as a random variable with logistic distribution and the response formula becomes

a logit model (Box & Cox, 1964; Carson & Hanemann, 2005). As a robustness check

to understand sensitivity of the results to model functional form and distributional

assumptions, alternative results are shown in Tables A.10 and A.11 in the Appendix

which instead employ a Bishop-Heberlein RUM binary response model that assumes

the error term is also a random variable with logistic distribution and the response

distribution is log-logistic (R. C. Bishop et al., 1983; W. M. Hanemann & Kanninen,

1996). Since there is not clear consensus in the literature about the most appropri-

ate welfare measure (e.g., median, mean) of the cumulative distribution function of

respondents’ maximum WTP to select for presentation of results and interpretation,

I include median, mean, and mean according to Boyle et al.’s adjustment approach

to account for distribution truncation at maximum bid (1988) for comparison (Boyle

et al., 1988; M. Hanemann, 1984).

To understand the bounds of vehicle owners’ WTP for a single-peril vehicle flood

insurance product in the study area, a double-bounded dichotomous choice (DBDC)

question design is adopted as the central approach. This approach, as opposed to

other contingent valuation methods such as single binary-choice, bidding games, or
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payment cards (Johnston et al., 2017), is selected due to its ability to estimate the

bounds of the WTP and its relative efficiency (M. Hanemann et al., 1991). The

double-bounded dichotomous choice contingent valuation method has been applied

to produce valuable knowledge about WTP for nonmarket environment-related goods

(Gelo & Koch, 2015; Molina et al., 2021). In some cases, double-bounded dichoto-

mous choice questions are complemented by an open-ended question (Alberini et al.,

2017). The present study adopts this complementary strategy by eliciting WTP from

respondents using an open-ended question as well as two valuation questions in the

DBDC format.

The DBDC approach begins by providing each respondent with a valuation ques-

tion in which an initial dollar amount from a pre-determined set of potential initial

bid amounts is randomly assigned. Let Binitial represent the initial bid amount, which

in the present survey can take on a value of either $20, $50, $100, and $200. If the re-

spondent answers “yes” to the valuation question containing Binitial, they are provided

a follow-up valuation question with a higher bid amount. Let Bhigher be a higher bid

amount that corresponds relative to each value of Binitial. Bhigher can take on values of

$30 (corresponding to Binitial=$20), $75 (Binitial=$50), $150 (Binitial=$100), or $300

(Binitial=$200) in the deployed survey instrument. If the respondent answers “no”

to the first valuation question, they are then provided a follow-up valuation question

with a lower bid amount. Let this lower bid amount be represented by Blower, which

can take on a value of either $10 (corresponding to Binitial=$20), $25 (Binitial=$50),

$50 (Binitial=$100), or $100 (Binitial=$200). Since each respondent who completes the

survey will answer two binary choice valuation questions, the response sets include:

(yes, yes); (yes, no); (no, yes); (no, no).

Pr(yes, yes) = Pr(V ≥ Bhigher) = 1−GV (Bhigher)

Pr(yes,no) = Pr(Bhigher ≥ V ≥ Binitial) = GV (Bhigher)−GV (Binitial)

Pr(no, yes) = Pr(Blower ≥ V ≥ Blower) = GV (Binitial)−GV (Blower)
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Pr(no, no) = Pr(Blower ≥ V ) = GV (Blower)

L =
K+1
∏

k=1

[ψk]
Nk (4.7)

where L is the likelihood function maximizing WTP β parameters, and there are

K alternatives of single-peril vehicle flood insurance policy bids that take on the

cost Ck. Parameters of the logit model are estimated using maximum likelihood

estimation optimized by the Broyden–Fletcher–Goldfarb–Shanno algorithm (Aizaki et

al., 2022; Fletcher, 2000). Further, note that ψ =GV (Ck)−GV (Ck−1) for k=1,...,K+1,

which represents the increasing probability of a “no” response over the K+1 observed

intervals of GV (C), where bid amount increases with k. We assume the probability of

a “no” response at C0 = 0, and the probability of a “no” response at CK+1 = 1. The

superscript, N, in Equation (4.7) denotes a “no” response at amount corresponding

to bid k. Further, GV (Ck) is monotone nondecreasing.

WTPi(Xi) = β0 + β1Income + β2Education+

β3 ln(vehicle value [$]) + β4SFHA + β5VFD+ (4.8)

β6Vehicle type + β7Concern + β8State + β9Bid + ǫi

Equation (4.8) above represents the main logit model used to estimate WTP,

where β parameters are maximized according to each individual i ’s observed charac-

teristics Xi and the random error component ǫi which is assumed to be distributed

N(0, σ2). The variable Income is categorical with five annual household income

bins ranging from “Less than $25,000” to “More than $250,000” while Education is

similarly categorical with six bins ranging from “No high school” to “Postgraduate

degree.” Further, the natural log of the reported value of the household’s most valu-
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able vehicle is included as a control, as is the reported location of each respondent’s

primary residence with respect to FEMA’s SFHA designations.25 “VFD” represents

respondents’ answers when asked whether their household has ever experienced sig-

nificant vehicle flood damages. A covariate is also included for respondent vehicle

type (e.g., sedan, sports utility vehicle [SUV], van), and the dummy variable State

takes on a value of 1 if the respondent lives in Texas and zero if they live in New

York. The Concern variable corresponds to a question in the survey instrument elic-

iting information about each respondent’s level of concern about flooding in their

community.

4.4.3 Survey design

The survey development and design process followed best practices outlined in

Dillman et al. (2014). Information was elicited through a web-based survey using

the services of Qualtrics. A full enumeration of the questions included in the sur-

vey instrument is available in the Appendix. Survey questions were pretested with

vehicle-owning economists possessing survey design and contingent valuation exper-

tise, transportation experts working for a government agency in the study area, and

multiple scholars with research backgrounds in flood risk mitigation policy and/or

survey design. Additionally, a project management team from Qualtrics reviewed

survey question logics as well as response information at multiple milestones to en-

sure quality responses.

The survey was conceptualized in the summer of 2022, with initial question

design and scoping taking place in the fall of 2022. Initially, per Dillman et al.

(2014), recruitment of respondents through mailing of hard copy survey materials to

a random selection of households in the study area was considered. While such an

approach proved successful in Netusil et al. (2021), and has the significant analytical

2522% of respondents answered “not sure” when asked if their primary residence is located in a
FEMA SFHA.
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benefit of randomization which partially addresses concerns about selection bias, the

estimated costs of this approach based on response rates in similar studies, mailing

costs, and labor costs associated with mailing, screening, and quality control proved

prohibitive. Thus, in January 2023, Qualtrics was engaged, and a suitable study

area and sampling approach at acceptable cost were identified. Pretesting of the

survey instrument occurred in late spring 2023, and a final version of the survey was

approved by the University of Miami Institutional Review Board on May 17, 2023. An

initial pilot launch of the survey was deployed in collaboration with Qualtrics in June

2023 to ensure soundness of question logics and gather information about respondent

completion duration time. Based on pilot results, respondents taking fewer than two

minutes to complete the entire survey were terminated from the final sample. All

responses in the final sample were collected during June and July 2023.

While many questions in the survey instrument elicit basic information about

demographics, attitudes, and experiences, the central questions of the study which

elicit information about WTP for a single-peril vehicle flood insurance policy were

carefully designed to be grounded in a realistic constructed market setting. Following

guidance in K. Bishop et al. (2020), bid amounts were provided in conjunction with

information that clearly articulates: 1. monetary amounts and who pays, 2. whether

payments are mandatory or voluntary, 3. frequency of payment, 4. the duration

of payment, 5. the method of payment, and 6. details of offered product benefits

and limits. Amounts and payment vehicles were designed to be credible and salient

to respondents. More specifically, the range of bid amounts–from a possible low of

$10 per year to a possible high of $300 per year– were selected based on pretesting

feedback and average annual comprehensive auto insurance policy prices in the two

states comprising the study area. According to NAIC data, the average comprehensive

policy premium in 2020 cost $279.44 per year in Texas, and $176.64 per year in New

York (NAIC, 2023). Thus, the range of bids included in the final survey instrument



114

bound the average comprehensive insurance policy price in the study area, with the

average initial bid amount lower than the average price of comprehensive coverage.

This constructed pricing approach aims to reflect the smaller scope of coverage of the

single-peril vehicle flood insurance product offered in the survey relative to actual

comprehensive insurance policies available in the general marketplace. Additionally,

NAIC indicates comprehensive coverage is typically sold with deductibles ranging

from $50 to $2,000 (NAIC, 2023), and the present survey offers an insurance policy

with a $100 deductible.

4.5 Results

4.5.1 Survey data and summary statistics

As shown in Table 4.2, the final sample following implementation of the various

screening and quality control measures outlined above is N=360. Table 4.3 shows

the bid amounts offered to each respondent and associated responses. The Binitial

amounts are randomly assigned, and follow-up bid amounts depend on responses to

the question containing Binitial. Among the 360 respondents in the final sample,

the mean completion time for the survey was 7.2 minutes. Table 4.4 presents sum-

mary statistics on demographic, flood-related, and vehicle-related information for the

total sample, as well as sample results by state. The right-most column provides

corresponding information where available from 2021 USCB ACS five-year estimates

representing variable estimate averages across the 39 zip codes in the study area.

Overall, the sample appears fairly representative of the study area population

based on observed characteristics. The sample has a higher proportion of respondents

who are female, have a bachelor’s degree, and have a household income greater than

$50,000 per year than the population means. Additionally, the average number of

vehicles in each sample household is 2.56, which is greater than the population average
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of 1.78. However, the population statistics shown in the right-most column of Table

4.4 pertain to the entire population in the study area, not the primary population of

interest, vehicle owners, therefore we would expect the average number of households

in the sample to be higher than the average across all households in these zip codes, as

sample data are only drawn from the vehicle-owning population. The average market

value of respondents’ most valuable household vehicle, the vehicle of interest with

respect to the single-peril vehicle flood insurance WTP elicitation, is approximately

$19,600, which is within a factor of 1.2 of the Kelley Blue Book (KBB) average used

car sale price previously cited.

Sample respondents report widespread and substantial flood exposure. 46% of

respondents reported living in FEMA SFHAs, while 74% reported their household

has experienced significant flooding at their primary residence. Importantly, 59% of

respondents report their household has experienced significant vehicle flood damages

in the past. Among the sub-sample of households who have experienced vehicle flood

damage and provided information on the subject,26 the estimated average maximum

amount of vehicle flood damage the household sustained was approximately $9,800,

with a sample standard deviation of approximately $12,500. 82% of sample respon-

dents are concerned about flooding negatively impacting their community, suggesting

flooding is a meaningful concern and widespread issue in the study area.

When considering comprehensive auto insurance literacy and uptake, only 64%

of respondents were aware before taking the survey that comprehensive coverage is

the type of auto insurance policy covering vehicles against flood damage. As hy-

pothesized, these findings demonstrate a sizable share of coastal vehicle owners lack

knowledge about the type of auto insurance policy that can provide financial resilience

in the wake of vehicle flood damages. Further, while the average respondent reported

having 2.56 vehicles available in their household, responses indicate only 1.28 vehi-

26Data for this variable were only collected from 185 of the 212 respondents reporting vehicle flood
damage due to addition of the question following pilot phase.
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cles per household have comprehensive coverage, suggesting a considerable share of

vehicles in the sample, approximately half, are uninsured against flood damages and

other perils covered by comprehensive auto insurance.

Leveraging Equations (4.1) and (4.2) above allows us to make caveated inferences

about population parameters from the sample data. Each of the sample proportions

described above has an estimated sampling error with 95% confidence interval between

4.0 and 5.2 percentage points, with these levels of precision corresponding to the

estimated share of the study area population27 living in a FEMA SFHA and the share

of the population concerned about flooding, respectively. These sampling errors, while

of non-trivial magnitude, are small enough such that sample data provide valuable

insight when generalizing findings to the study area’s population proportions. For

example, these results allow population-level inference at a 95% confidence level to

support the claims that a majority of vehicle-owning households in the study area

have experienced significant vehicle flood damage in the past, and roughly one-third

of vehicle owners in the study area do not know comprehensive auto insurance covers

vehicle flood damage.

Motivated by findings in Kousky and Netusil (2023) which find a positive corre-

lation between residence SFHA status and homeowner knowledge about NFIP cov-

erage, two-sided t-tests are applied to see if vehicle owners residing in SFHAs, on

average, are more knowledgeable about the fact that comprehensive auto insurance

covers vehicle flood damages than vehicle owners outside SFHAs. A two-sided t-

test comparing knowledge level about comprehensive auto insurance flood coverage

between survey respondents in SFHAs (N=166) and those located outside SFHAs

(N=114) does not suggest differences between these two groups are statistically dif-

27Note: sampling error calculations assume a population of interest that is smaller than the total
population, given many individuals in the study area do not drive or own a vehicle. Thus, these
calculations assume a total population of interest at a size of approximately 693,800, which assumes
the state-level shares of the total population with a driver’s license, which are roughly 602̇%
and 63.1% for New York and Texas, respectively, in 2020 according to the US Department of
Transportation.

https://www.fhwa.dot.gov/policyinformation/statistics/2020/pdf/dl1c.pdf
https://www.fhwa.dot.gov/policyinformation/statistics/2020/pdf/dl1c.pdf
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ferent from zero (p<0.05). However, a comparison between respondents in SFHAs

and those responding “not sure” when asked if they reside in a SFHA did produce

results suggesting the rate of awareness about comprehensive insurance’s flood cover-

age is significantly higher among respondents who report living in a SFHA (p<0.05).

More specifically, the t-test finds the rate of awareness about comprehensive insur-

ance’s flood coverage is 16.1 percentage points higher (± 13 percentage points) among

respondents stating they live in a SFHA, as compared with respondents who do not

know their SFHA status.

Further, when considering population means using Equation (4.2), the average

estimated value of households’ most valuable vehicle, approximately $19,600, has a

95% confidence interval of [$18,096.64, $21,115.36]. This average is slightly lower

than the 2019-2021 average KBB used vehicle sale price, and may be downward-

biased due to the survey instrument’s truncation of possible responses at an upper

bound of $50,000. When generalizing results regarding maximum sustained vehicle

flood damages to the study area population, conditional on the fact the respondent’s

household has experienced vehicle flood damage, population estimates suggest aver-

age maximum vehicle flood damages are $9,800, with a 95% confidence interval of

[$7,994.16, $11,595.84].28 Taken in combination, these survey results suggest vehicle

flood damages are common from a cumulative perspective, and have high costs when

they do occur.

28This application of Equation (4.2) assumes the population of interest is the share of the motorist
population in the study area that is estimated to have ever experienced a vehicle flood damage
event, which is assumed to be 59% based on Table (4.4) results.



118

Table 4.3: Bid amounts and responses (N=360)

Number Proportion Proportion Proportion
Binitial of Binitial accepting Blower accepting Bhigher accepting

responses Binitial Blower Bhigher

$20 86 0.81 $10 0.38 $30 0.93
$50 94 0.80 $25 0.42 $75 0.87
$100 84 0.74 $50 0.42 $150 0.77
$200 96 0.63 $100 0.58 $300 0.58
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Table 4.4: Survey summary statistics

New York Texas Total sample ACS, 2021

(N=140) (N=220) (N=360) (N=1,194,229)

Variable Mean SD Mean SD Mean SD Mean
Demographic information
Female 0.54 – 0.68 – 0.63 – 0.51
Age 38.1 17.8 39.0 15.4 38.6 16.3 36.9♠

Bachelor’s degree or higher 0.47 – 0.18 – 0.29 – 0.16
Household income < $50,000 0.37 – 0.60 – 0.51 – 0.44
Own your home? (1=yes; 0=no) 0.59 – 0.49 – 0.53 – 0.57
Rent your home? (1=yes; 0=no) 0.37 – 0.49 – 0.44 – 0.43
White or caucasian 0.64 – 0.44 – 0.52 – 0.52
Black or African-American 0.31 – 0.38 – 0.35 – 0.29
American Indian or Alaska Native 0.06 – 0.03 – 0.04 – 0.003
Asian or Pacific Islander 0.01 – 0.05 – 0.04 – 0.05
Other race 0.06 – 0.14 – 0.11 – 0.06
Hispanic or Latino (any race) 0.24 – 0.28 – 0.27 – 0.29

Flood-related information
Live in a SFHA? 0.44 – 0.47 – 0.46 – –
Primary residence flood damage? (1=yes; 0=no or NA) 0.74 – 0.75 – 0.74 – –
Vehicle flood damage? (1=yes; 0=no or NA) 0.60 – 0.59 – 0.59 – –
Maximum vehicle flood damage($1,000s)* $ 11.5 13.9 8.7 11.4 9.8 12.5 –
Concerned about flooding? (1=yes; 0=no) 0.79 – 0.84 – 0.82 – –
Concerned about climate change? (1=yes; 0=no) 0.78 – 0.75 – 0.76 – –
Know comprehensive insurance (CI)
covers flood damage? (1=yes; 0=no) 0.71 – 0.60 – 0.64 – –

Vehicle information
# of vehicles owned, free and clear 1.19 0.84 1.47 0.88 1.36 0.88 –
# of vehicles owned, financed 0.45 0.73 0.69 0.86 0.98 0.82 –
# of vehicles leased 0.71 0.82 0.53 0.85 0.60 0.84 –
Total # of vehicles in household 2.36 1.68 2.70 1.86 2.56 1.86 1.78
Total # of household vehicles in household with CI† 1.17 0.86 1.34 1.03 1.28 0.97 –
Market value of most valuable household vehicle ($1,000s)♣ 23.3 16.2 17.3 13.0 19.6 14.6 –
Years living in zip code (cumulative) 11.7 7.4 9.7 7.5 10.4 7.5 –

†12 respondents from New York and 17 respondents from Texas answered “not sure,” therefore statistics in this row only reflect non-“not sure” responses.
*Average among respondents reporting any experience of vehicle flood damage (N=185).
♠ This is the median age; mean age not available from ACS.
♣Note: given question phrasing as shown in Appendix, all responses with values ≤$5,000 take on the value of $5,000 while all responses with values ≥$50,000 take on value of $50,000. ACS race categories
(e.g., White or caucasian, Other race) reflect “one race only” while sample data reflect survey respondents’ ability to select multiple race options.
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4.5.2 Willingness to pay estimates

Table 4.5 presents main model results as described in Equation (4.8) in Sec-

tion 4.4.2, while Table 4.6 column (1) provides preferred WTP estimates for the full

sample. These estimates find a mean WTP for a single-peril vehicle flood insurance

policy that is $182.46 ($167.89 to $196.88, 95% CI) among sample respondents. Based

on constructed market conditions as described in the DBDC elicitation, this policy

would cover the respondent’s most valuable household vehicle against all forms of

flood damage for one year. Confidence intervals for WTP estimates are constructed

using methods outlined in Krinsky and Robb (1986), in which mean WTP parame-

ters are computed across 1,000 draws from a multivariate normal distribution with a

vector of the parameter estimates as a mean as well as the variance-covariance matrix

of the parameter estimates.

As noted above, a scholarly debate exists with respect to selection of the most

appropriate welfare measure(s) of the cumulative distribution function of respondents’

maximum WTP. While M. Hanemann (1984) highlights the merits of the median as a

suitable welfare measure due to its relative robustness over the expected value when

results are sensitive to distributional assumptions, Boyle et al. (1988) note the me-

dian has an undesirable feature of poorly capturing skewed estimated distributions.

Boyle et al. further posit that, in an ideal scenario, the range of integration should

not be truncated according to bid amounts in closed-ended survey settings. Thus,

Boyle et al. proposed an adjustment that assumes a uniform distribution, a method

used effectively in other contingent valuation studies (Bateman et al., 1995; Molina

et al., 2021) and which is employed here as well for alternative perspective about

result sensitivity to bid design and distributional assumptions. Table 4.6 column (1)

shows an estimated median WTP of $197.44 ($176.08, $222.66, 95% CI), which is

similar in magnitude to the central mean WTP estimate, within a factor of 1.1. How-

ever, mean estimates using the Boyle et al. (1988) adjustment increase the central
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WTP estimate by more than 30%, suggesting the bid amounts provided in the survey

instrument may not fully capture the tail of the distribution, i.e. individuals with

WTP for the offered vehicle flood insurance product that exceed the upper bound of

the researcher-selected bid range. Tables A.10 and A.11 in the Appendix show results

using the Bishop-Heberlein RUM, which indicate estimates are generally consistent

across RUM selection and related distributional assumptions. With respect to infer-

ence, comparison of results generally indicate estimates are more sensitive to welfare

measure selection than RUM selection.

Table 4.7 provides results from the open-ended WTP elicitation question. While

contingent valuation experts advise against relying heavily on this elicitation format

to generate WTP estimates due to large number of respondents who provide zero or

unrealistically high WTP responses (K. Bishop et al., 2020), and general incentive

incompatibility concerns (Carson & Groves, 2007), open-ended estimates can inform

the researcher during pretesting and complement results from closed-ended formats.

25 responses are excluded from these calculations as they did not meet a conservative

quality control inclusion criterion: maximum stated WTP in the open-ended ques-

tion cannot exceed 50% of the stated market value of the respondent’s most valuable

household vehicle, i.e. the vehicle to which the hypothetical flood insurance prod-

uct pertains.29 While removing observations may affect the statistical power and

representativeness of these estimates, the author’s concerns about response validity

outweigh these considerations as it is difficult to conceive a vehicle owner would truly

spend, for example, $8,000 per year on flood insurance coverage for a vehicle worth

$15,000. Unsurprisingly, excluding these 25 observations with unrealistically-high

stated WTP lowers the mean, median, and maximum WTP estimates, as well as cor-

responding standard deviations. Applying Equation (4.2) to these sample statistics

leads to a population mean WTP estimate of $434.90 (±122.16, 95% CI), which is

29For comparison, the average annual cost of a multiple-peril comprehensive policy in 2020 was
approximately 9% of the value of the average 2019-2021 used vehicle sale price according to KBB.
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larger than the baseline mean WTP estimate of $182.46 in Table 4.5 by more than

a factor of two. Open-ended results are interpreted with caution, as the relatively

higher estimated mean WTP using this format may capture true preferences at the

higher-cost tail of the WTP distribution, however the validity of elicited values is

suspect due to potential incentive incompatibility.

Table 4.5 provides main estimates from the logit model. These results are pre-

sented with a reference scenario in the main specification shown in column (1) in

which respondent’s household income is $100,001-$250,000 per year, respondent has

an Associate’s Degree, and respondent has never experienced vehicle flood damage

nor is their primary residence located in a FEMA SFHA. The vehicle type driven

by the respondent is “other,” they live in New York, and they are not concerned at

all about flooding. Results in column (1) indicate household income, SFHA status

of respondent’s primary residence, vehicle type, and level of concern about flooding

are all statistically significant at p-values of 0.05 or lower, suggesting it is likely the

effect of these variables on WTP is statistically different from zero. Intuitively, bid

amount is also negatively correlated with WTP. Notably, results do not suggest statis-

tically different WTP between respondents in New York and Texas. The negative and

statistically significant parameter estimate associated with household income below

$25,000 per year in column (1) implies a relatively lower WTP among survey respon-

dents in the lowest income bracket. The positive estimated coefficients for SFHA

and Very concerned that are significant at a p-value of 0.01 suggest floodplain status

and level of concern about flooding are positively correlated with WTP for vehicle

flood insurance. Following results in specification shown in column (1), two separate

estimations generally in line with Equation (4.8) are conducted using subsets of the

full sample. Specifically, these subsets only include respondents who: 1. report living

in a FEMA SFHA, and 2. report being “somewhat concerned” or “very concerned”
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about flooding in their community. Sample-wide, 166 respondents report living in a

SFHA and 295 respondents report being concerned about flooding.

Table 4.6 and companion visualization in Figure 4.4 present results across welfare

measures as well as across groupings according to respondents’ FEMA SFHA status

and level of concern about flood hazard. Mean, median, and mean with Boyle et

al. adjustment WTP estimates are all higher among the subset of respondents living

in SFHAs and those reporting concern about flooding relative to estimates among

the full sample. Specifically, the mean and median WTP estimates for respondents

residing in a SFHA are $243.66 ($218.69 to $262.59, 95% CI) and $308.30 ($252.14,

$383.65, 95% CI). These estimates are greater than their full-sample counterparts

by factors of roughly 1.3 and 1.5, suggesting WTP among vehicle owners residing in

areas defined by FEMA as flood-prone is higher than the general population’s. These

results are generally in line with Netusil et al. (2021), who similarly find WTP for

flood insurance is higher among homeowners living in FEMA SFHAs as compared

with homeowners residing outside a SFHA. Results in Table 4.6 also suggest concern

about flooding increases WTP for vehicle flood insurance, though at a much smaller

magnitude than SFHA status.

When considering factors which may influence WTP for vehicle flood insurance

beyond SFHA status and flooding concerns, model results in Table 4.5 also show

respondent household income and vehicle type are statistically significant in columns

(1), (2), and (3). When employing Equation (4.8) using preferred estimation methods

previously outlined, truncated mean and median WTP estimates for respondents from

households making less than $25,000 per year (N=82) are $128.76 ($103.46 to $156.78,

95% CI) and $120.09 ($83.35 to $160.41, 95% CI). The average value of households’

most valuable vehicle in this income bracket in the sample was $10,317, roughly

half of the sample-wide average and less than half the aforementioned KBB average

price. While income constraints may explain these results, it also stands to reason the
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amount of insurance coverage needed to cover a relatively lower-value vehicle asset

would be worth less than the amount needed to cover a relatively higher-value vehicle

asset. Findings across the full sample and subsets also indicate a relatively higher

WTP for vehicle flood insurance among respondents with a sedan, as compared with

those with a van, SUV, or other type of vehicle. While purely speculation, this could

perhaps be driven by sedans’ lower ground clearances and greater vulnerability to

flood damage conditional on exposure, as represented in Figure 3.3.

4.6 Discussion

4.6.1 Policy and insurance market implications

The above results have a number of relevant implications for insurance markets

and the regulatory bodies overseeing them, four of which are described in this section.

First, despite potential avoidance capabilities enabled by the mobile nature of vehi-

cles, respondents express a considerable willingness to pay for a single-peril vehicle

flood insurance product. In the preferred conservative central estimates, mean and

median WTP for one year of coverage are approximately $182 and $197, respectively.

These amounts exceed the average annual cost of a multiple-peril comprehensive auto

insurance policy in the US in 2020, suggesting the potential for significant consumer

surplus enjoyed by coastal vehicle owners in the comprehensive auto insurance mar-

ket. Such robust WTP estimates may be of interest to insurance companies and

regulators when weighing pricing structures and potential new sources of revenue.

Second, these results have implications for state insurance regulators motivated

to accurately price flooding and climate impacts in auto insurance premiums. Un-

derpricing insurance policies can pose solvency risks to insurers, making accurate

pricing an important prerogative for multiple parties (Mohey-Deen & Rosen, 2018).

Currently, each state has different rate-making rules determining which factors are
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Table 4.5: Logit model results

All SFHA Concerned

Variable (1) (2) (3)

Household income: < $25,000 (ref. = $100,001-$250,000) -1.191* -4.748*** -1.517*
(0.518) (1.360) (0.594)

Household income: $25,001-$50,000 (ref. = $100,001-$250,000) -0.411 -3.580** -0.495
(0.467) (1.311) (0.531)

Household income: $50,001-$100,000 (ref. = $100,001-$250,000) 0.025 -2.677* -0.322
(0.429) (1.253) (0.492)

Household income: >$250,000 (ref. = $100,001-$250,000) -1.069 -2.923 -0.728
(0.775) (1.869) (0.901)

Education: No high school (ref. = Associate’s degree) 0.802 15.422 -0.374
(1.114) (363.360) (1.306)

Education: Some high school (ref. = Associate’s degree) 0.183 2.116* 0.025
(0.505) (0.926) (0.579)

Education: High school diploma or equivalent (ref. = Associate’s degree) 0.173 0.984. 0.252
(0.334) (0.593) (0.388)

Education: Bachelor’s degree (ref. = Associate’s degree) 0.413 0.691 0.307
(0.413) (0.755) (0.487)

Education: Postgraduate degree (ref. = Associate’s degree) 0.198 1.886 -0.190
(0.515) (1.310) (0.549)

Ln(Vehicle Value) -0.124 -0.295 -0.002
(0.201) (0.368) (0.227)

In SFHA: Not sure (ref. = No) -0.034 – 0.273
(0.324) (0.385)

In SFHA: Yes (ref. = No) 0.873** – 1.172***
(0.291) (0.331)

VFD: Not sure (ref. = No) 0.145 0.906 0.280
(0.646) (1.522) (0.886)

VFD: Yes, multiple times (ref. = No) 0.628. 1.109. 0.924*
(0.378) (0.628) (0.419)

VFD: Yes, once (ref. = No) 0.436 1.205* 0.686*
(0.290) (0.523) (0.328)

Vehicle type: Sedan (ref. = other) 1.270** 2.024** 1.701***
(0.399) (0.707) (0.436)

Vehicle type: SUV (ref. = other) 1.062** 2.200 1.297**
(0.387) (0.691) (0.419)

Vehicle type: Van (ref. = other) 0.614 1.796 0.988
(0.635) (1.200) (0.795)

State: Texas (ref. = New York) -0.254 -0.065 -0.041
(0.283) (0.536) (0.339)

Concern: Not very concerned (ref. = Not concerned at all) 0.911 13.299 –
(0.719) (363.356)

Concern: Somewhat concerned (ref. = Not concerned at all) 1.663* 14.729 –
(0.679) (363.355)

Concern: Very concerned (ref. = Not concerned at all) 2.224** 15.224 –
(0.696) (363.355)

Bid amount -0.011*** -0.011*** 0.012***
(0.001) (0.002) (0.001)

Number of observations: 360 166 295
Log likelihood: -365.05 -129.00 -284.27
AIC 778.10 302.01 610.54
BIC 871.37 370.47 687.97

Significance codes: ***: 0.001; **: 0.01; *: 0.05; .: 0.1.
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Table 4.6: WTP estimates by FEMA Special Flood Hazard Area status and level of concern about flooding - logit model

All (N=360) SFHA (N=166) Concerned (N=295)

(1) (2) (3)
Estimate 95% CI Estimate 95% CI Estimate 95% CI

All respondents (N=360)
Mean (truncated at max. bid) $182.46 [$167.89, $196.88] $243.66 [$218.69, $262.59] $200.10 [$183.84, $214.67]
Median $197.44 [$176.08, $222.66] $308.30 [$252.14, $383.65] $221.02 [$196.99, $246.63]
Mean (truncated at max. bid with adjustment) $239.27 [$205.66, $284.67] $510.43 [$342.65, $803.50] $275.90 [$231.96, $329.24]

62 New York-based respondents and 104 Texas-based respondents reported living in a SFHA. 110 New York-based respondents and 185 Texas-based respondents reported being “somewhat concerned” or
“very concerned” about flooding having a negative impact their communities.

Table 4.7: Summary statistics for responses to open-ended WTP elicitation

Mean Median Minimum Maximum Standard deviation

All (N=335) $434.90 $100.00 $0.00 $15,000.00 $1,141.03

New York (N=130) $652.6 $180.00 $0.00 $15,000.00 $1,599.09

Texas (N=205) $296.80 $100.00 $0.00 $5,000.00 $682.11
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Figure 4.4: Central willingness to pay estimates for a single-peril vehicle flood insurance policy across welfare measures.
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allowed to influence insurance premium rates, and these rules govern the weight each

factor can have in the rate-making decision (Reger, 2015). In some states, insurers

are allowed to factor territorial weights into rate-making, which commonly occur at

the most granular level of zip code, or coarser geographic units (e.g., the state of

Connecticut only had 13 auto insurance rating territories in 2006) (Kaminski, 2006).

In California, there is a complex territorial rating process that may include grouping

census tracts or zip codes together according to claims severity, however territorial

considerations are not a primary nor secondary factor in the ratemaking decision,

but a tertiary factor (“California Code of Regulations”, 2023). Further, demographic

factors such as race and income are not allowed to be factored into ratemaking de-

cisions in any US state (Brobeck & Hunter, 2012). Thus, unlike the NFIP which

prices flood insurance for structures and their contents according to modeled physical

flood risk as shown in Table 4.1, comprehensive auto insurance prices only reflect

physical flood risk at coarse geographic levels. However, since motorists’ traffic viola-

tions and frequency of at-fault accidents are typically primary factors in ratemaking

decisions, pricing likely captures some potential flood risk associated with motorists’

propensities to drive into or remain in flood-exposed areas, though this only par-

tially addresses flood risk in auto insurance pricing. Accurate pricing or underpricing

relative to true risk still does not address “propitious selection” factors which can

lead risk-averse individuals into insurance markets and risk-seeking individuals out of

them (Hemenway, 1990).

Third, these results motivate consideration of opportunities for policy interven-

tions, such as education campaigns or disclosure requirements, to increase awareness

about vehicle flood risks and insurance options among potentially vulnerable vehicle

owners in flood-prone areas. For example, while homeowners with Federally-backed or

regulated mortgages residing SFHAs are required to purchase flood insurance through

NFIP, and many states have enacted flood risk disclosure laws in the residential sector
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to promote informed consumer decisions vis-à-vis structure-level flood risk (Hino &

Burke, 2021), flood risk information is generally not disclosed to vehicle owners at

point of sale in cases where comprehensive insurance is not required by a lender or

lessor. In combination, the dual insights of considerable WTP for single-peril vehicle

flood insurance policies among respondents, and sizable estimated share of the study

area population lacking knowledge about auto insurance flood coverage, suggest auto

insurance literacy gaps may be leading to suboptimal comprehensive auto insurance

penetration. This is perhaps most relevant to vehicle owners in SFHAs, where vehicle

flood insurance gaps persist despite relatively high WTP for a single-peril vehicle flood

insurance product. If some uninsured consumers opt out of purchasing comprehensive

auto insurance due to lack of knowledge about scope of flood coverage, when they

would truly prefer having vehicle flood insurance coverage, aggregate welfare may be

diminished, leaving uncaptured consumer financial resilience benefits and unrealized

revenue to insurers.

Fourth and last, this study’s findings highlight gaps in publicly-available auto

insurance data, which impairs effective public policy analysis. Unlike NFIP policies

and claims data which all pertain to flood peril, granular peril-specific flood-related

comprehensive auto insurance claims data are not analogously publicly-available. Ad-

ditionally, while NFIP data are spatially explicit, with policy and claims data geolo-

cated at the property level, publicly-available comprehensive claims data are only

coarsely available at the state level. Increasing the accessibility, transparency, and

usability of comprehensive insurance policy and claims data, and producing data

products that are both flood-specific and geographically precise, would enable wider

empirical analysis unconstrained by high costs of survey data. Such data products

provided by insurers and/or state regulators could potentially improve public pol-

icy research to inform flood and climate risk exposure and vulnerabilities in auto

insurance markets, which have implications for the broader insurance market.
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4.6.2 Limitations and future work

The limitations of this chapter are enumerated to inform inference and future

research. First, while a randomization element does exist in which Qualtrics ran-

domly contacts potential respondents from the company’s market research database

about survey participation, there are a number of potential threats to representa-

tiveness which need to be acknowledged. Selection bias among contacted potential

respondents could systematically overrepresent segments of the population exhibit-

ing greater propensity to participate in the survey, and underrepresent segments less

prone to participate. While observable sample characteristics on key variables such

as vehicle ownership rates, age, and average vehicle value are close enough to sample

zip code-wide estimates to provide reason to assume such sampling biases are not

of huge magnitude, the absence of a fully-representative sample frame and the po-

tential for non-response bias cannot be overlooked. Additionally, in certain survey

results, such as the open-ended WTP elicitation, it is possible deliberate removal of

seemingly-unrealistic responses actually remove valid, representative observations. In

making these subjective decisions, the author aimed to equally balance priorities of

representativeness and validity.

A second limitation concerns constructed market conditions in the WTP elici-

tation. While these central questions were designed to mirror a real market setting

with fidelity, and attempted to provide ample information to respondents such that

informed, valid responses were elicited, a few subjective choices may have impacted

outcomes in significant ways which may be of interest to future researchers. In the

DBDC elicitation, respondents were asked their WTP for a vehicle flood insurance

product with $100 deductible. Since deductibles and premium prices generally have

an inverse relationship, and auto insurance policies with larger deductibles of $250 or

$500 are commonly selected by consumers, it is likely WTP estimates would be signif-

icantly lower if a larger deductible amount were offered. Additionally, this study only
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requests WTP information about respondents’ most valuable household vehicle. As a

result, heterogeneity in preferences for insurance coverage between household vehicles

among respondents with multiple vehicles is not captured. Further, while the WTP

elicitation pertains to one vehicle-year of insurance coverage, households owning mul-

tiple vehicles often bundle their vehicles under one policy for a lower cost of coverage

per vehicle-year. Thus, this research overlooks WTP for tens of millions of household

vehicles, since more than 60% of US households are estimated to have access to two

or more vehicles (USCB, 2022). Survey results show, on average, approximately half

of household vehicles lack comprehensive auto insurance. Future work in this area

might explore the preferences of well-informed consumers which influence decisions

to insure, or not insure, household vehicles under a comprehensive policy.

Last, due to lack of data on observed behavior, this work estimates WTP for

an insurance product not generally available in the marketplace using a stated pref-

erences approach. While contingent valuation and other stated preferences methods

are often suitable in applications where observations describing revealed preferences

are not observed (Carson & Hanemann, 2005), results rely heavily on econometric as-

sumptions, quality of elicitation design, and accuracy of stated information provided

by respondent as representative of true behavior. Ideally, insights from this chapter

could be complemented in the future by empirical analysis of observational records in

a revealed preferences approach to complement stated preferences findings, however

current data limitations hinder such work at present.

4.7 Conclusions

This study focuses on two distinct urban, coastal regions in New York and Texas

that are known to have experienced a relatively high number of uninsured vehicle flood

damage cases in the past decade and a half. High vehicle ownership rates, expanding
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and intensifying flood hazards driven by climate change, and urban development

patterns suggest many other communities in the US face similar vehicle flood risk

mitigation challenges. While many studies to date have focused on the experiences

of residential property with respect to actualized flood damages and flood insurance

uptake, this is the first to empirically examine flood damages, literacy rates regarding

flood insurance coverage, and WTP for a single-peril flood insurance policy with a

focus on vehicle assets.

Responses from 360 vehicle owners across 39 coastal zip codes indicate vehicle

flood damages are common and can be of considerable magnitude. Contingent valu-

ation estimates find respondents exhibit robust WTP for a single-peril vehicle flood

insurance product currently not available on the general auto insurance market. The

preferred mean estimate of WTP per vehicle-year for vehicle flood insurance cov-

erage is $182.46, a value which exceeds the average price of a comprehensive auto

insurance policy in the US in 2020. Estimated WTP for single-peril vehicle flood

insurance among respondents living in FEMA-designated SFHAs was approximately

33% higher than the sample-wide average, which is consistent with similar conclu-

sions in the housing literature that find homeowners in SFHAs have higher WTP for

flood insurance, on average, than homeowners outside SFHAs (Netusil et al., 2021).

Even when controlling for vehicle value, estimates find WTP and vehicle owner house-

hold income are negatively correlated, suggesting the potential for income constraints

to affect comprehensive auto insurance affordability and penetration in the actual

marketplace. 59% of survey respondents report their household has experienced at

least one significant vehicle flood damage event, though on average fewer than half of

household vehicles are reported to be covered by a comprehensive policy. Among re-

spondents reporting vehicle flood damage, the average maximum cost of experienced

vehicle flood damages is nearly $10,000, suggesting vehicle flood damages are not only

common, but can be large in magnitude when they occur.
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Empirical results also find approximately one in three vehicle owners in the study

area lack the knowledge that comprehensive auto insurance is the type of policy that

covers a vehicle against flood damage. While insightful research on homeowner flood

insurance literacy has been conducted in the housing literature and finds considerable

knowledge gaps exist among homeowners about the type of policy that covers residen-

tial structures against flood damage (Kousky & Netusil, 2023), this is the first study

to apply analogous research questions to vehicle owners. While results do not suggest

vehicle owners residing in SFHAs are more or less informed about vehicle flood in-

surance coverage than those indicating they reside outside SFHAs, the vehicle flood

insurance literacy rate among the population reporting they do not know if their res-

idence is in a SFHA is 16 percentage points lower, on average, than the rate among

vehicle owners residing in SFHAs. Thus, despite considerable mean WTP estimates

for single-peril vehicle flood insurance, insurance gaps persist, and some segments of

the population appear particularly unaware of their key household assets’ objective

flood risk and pertinent insurance options to mitigate these risks.

These results make at least three notable contributions to the academic literature

on climate adaptation, insurance, and flood risk mitigation. First, in the absence

of accessible disaggregated flood-specific comprehensive auto insurance policy data

describing vehicle owners’ revealed preferences, this study elicits and derives novel

WTP estimates for a single-peril vehicle flood insurance product using a contingent

valuation approach. The magnitude of these estimates suggests coastal vehicle owners

may enjoy significant consumer surplus in the comprehensive auto insurance market.

Insurers and state insurance regulators may be interested in these WTP estimates,

given incentives to identify new viable revenue streams. Additionally, WTP estimates

are higher among respondents with greater objective flood exposure and elevated

concern about flooding, suggesting demand for flood insurance coverage for vehicles
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may increase as climate change impacts and urban development patterns expose more

areas to flood hazard.

Second, this work fills an epistemic gap resulting from the absence of granular

flood-specific auto insurance claims data by providing estimates of the scope and mag-

nitude of vehicle flood damages in an urbanized coastal study area. Inferences to the

population level indicate a majority of vehicle-owning households in the 39 zip codes

in the study area have at some point experienced significant vehicle flood damages,

and the estimated average maximum amount of damage experienced among those

having experienced vehicle flood damage is approximately $9,800 ($7,994, $11,596,

95% CI). These results provide compelling evidence that vehicle flood damages are

widespread and of significant magnitude. Third, the survey data provide a first ex-

amination of vehicle flood insurance literacy rates among vehicle owners, and finds

considerable vehicle flood insurance literacy gaps exist. Public policy interventions

such as education campaigns or vehicle flood risk disclosure requirements could po-

tentially reduce financial vulnerability to vehicle flood damages by increasing literacy

and insurance penetration rates. Future research might examine disaggregated com-

prehensive auto insurance policies and claims data to help inform design of insurance

markets and related public policies, thereby promoting financial resilience in the face

of intensifying flood hazards.
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Conclusion

This dissertation is motivated by the intersection of existing household vulnera-

bility and growing flood hazard exposure driven by anthropogenic climate change and

status quo urban development patterns. At its core, the objective of this research is

to inform households, firms, and policymakers in meaningful ways that can improve

future climate adaptation and flood risk reduction efforts. The dissertation primar-

ily focuses on exposure, vulnerability, and risk mitigation opportunities with respect

to two widely-owned and economically-important household assets: residential prop-

erty and vehicles. The research is interdisciplinary in nature, leveraging concepts as

well as technical approaches from the fields of environmental science, policy analysis,

environmental economics, and adaptation science. The following paragraphs briefly

describe the main scholarly contributions of each chapter, as well as avenues for future

research conceived during the analysis and interpretation of results.

In my first research chapter, I contribute to an emerging body of scholarship on

the hedonic pricing of anthropogenic sea level rise (SLR) impacts in coastal residen-

tial property markets, specifically by employing a novel application of the econometric

triple-differences estimator that exploits temporal variation in global scientific con-

sensus about observed anthropogenic SLR and controls for extant flood risk as repre-

sented by Federal Emergency Management Agency (FEMA) flood maps. The chapter

focuses on the southeastern United States (US) and for the first time integrates a

135
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policy-relevant alternative property value metric, structure depreciated replacement

value (DRV), alongside transaction prices as a statistical robustness check and more

relevant property value measure when analyzing Federal programs with flood miti-

gation objectives. While results do not detect a price effect of anthropogenic SLR

exposure in isolation, they do suggest negative effects estimated elsewhere in the lit-

erature could be attributable to acute extant flood risk or compositional differences

in residential building stock. Additionally, across measures of residential property

value, coastal property value is positively correlated with census tract income and

negatively correlated with non-Hispanic Black or African-American population share

with statistical significance, suggesting policy decisions that weight every dollar of

property value equally may have the potential to favor higher-value properties in

flood risk management decisions and reinforce existing property value disparities.

Chapter 2 may be complemented by future research in at least three avenues.

First, future work may build on this revealed preferences study by estimating property

owners’ “willingness-to-accept” of SLR impacts across varying magnitudes, timescales,

and adaptation scenarios through a stated preferences study. Second, while previous

researchers have analyzed the impacts of flood risk disclosure laws on residential prop-

erty markets, the role of high-quality climate risk information (e.g., localized impacts

of SLR on relevant timescales) and policy interventions requiring the provision of this

information to prospective homeowners or renters in SLR-exposed areas, may provide

insight germane to future coastal adaptation policies. Third, specific case studies fo-

cused on FEMA or US Army Corps of Engineers (USACE) flood mitigation projects

that employ alternative benefit-cost analysis (BCA) methods and social welfare func-

tions relative to existing Federal policy guidance might inform policy analysts about

the sensitivity of project selection decisions and flood risk reduction outcomes to

property value inputs and their weighting (or lack thereof).
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Chapter 3 conducts a first-of-its-kind, data-intensive national stocktake of the

number and value of household vehicles located in the contiguous US, incorporating

data from more than 80,000 US census tracts, 10 billion pixels of US Geological

Survey (USGS) land cover data at 30-meter resolution, and more than 100 million

property-level observations from the USACE National Structure Inventory (NSI) and

First Street Foundation, respectively. While many studies have focused on exposure

and impacts of flooding on residential and commercial property, this study is the first

to focus exclusively on US households’ most widely-owned tangible asset. Preferred

estimates suggest approximately 13.1 million household vehicles worth more than $300

billion are located in FEMA SFHAs, and 5.2 million of these vehicles are in census

tracts defined by the Federal government as “disadvantaged.” Further, this study is

the first to analyze previously-unstudied FEMA Individuals and Households Program

(IHP) data, which indicate thousands of households apply for disaster assistance in

connection with vehicle flood damages every year, and FEMA has paid more than

$130 million through IHP to mostly low-income households recovering from uninsured

vehicle flood damages.

Going forward, scholars may advance our understanding of US vehicle flood dam-

ages and related disaster assistance by acquiring and analyzing granular flood-specific

insurance claims data from private firms or state regulators, and/or additional infor-

mation from FEMA staff about the specific levels of vehicle flood damage experienced

by IHP applicants as well as the precise reasons applicants are deemed ineligible. Ad-

ditionally, as remote sensing data, computing power, and machine learning techniques

improve, empirical analysis of observed vehicle owner behaviors before, during, and

after flood events may refine these estimates of the number and value of flood-exposed

vehicles, and produce valuable insight into the rates at which vehicle owners avoid

inundated areas or advance into them.
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Finally, Chapter 4 gathers novel information from 360 vehicle owners in coastal

New York and Texas about their flood insurance literacy, past experiences regarding

vehicle flood damages, and willingess-to-pay (WTP) for a hypothetical single-peril

vehicle flood insurance product. This survey fills a key epistemic gap in the academic

literature, which has to date predominantly focused on flood exposure, insurance

uptake, and related policy opportunities for flood risk mitigation with respect to resi-

dential property, with little analogous attention paid to an also-important but under-

studied household asset: vehicles. Findings suggest vehicle flood damages are both

common and substantial in magnitude when they occur in the study area, suggesting

the opaqueness of private auto insurance data and the multi-peril nature of compre-

hensive auto insurance policies may obfuscate public understanding of the scale of

insured vehicle flood damages in the US. More than one-third of survey respondents

reported a lack of awareness about the type of auto insurance policy that covers flood

damages, suggesting the potential for asymmetric information to yield suboptimal

risk management decisions. Preferred estimates indicate respondents were willing to

pay an average of $182.46 per year for the hypothetical single-peril vehicle flood in-

surance product, with vehicle owners who are concerned about flooding or reside in

FEMA SFHAs willing to pay substantially more for such a policy. These findings

suggest insurance firms may consider offering peril-specific auto insurance policies

in hazard-prone areas, as respondents’ mean WTP for the hypothetical single-peril

product is comparable to the average price of a comprehensive auto insurance policy

actually available on the market. Additionally, vehicle owners, insurance firms, and

state regulators all stand to potentially benefit from increasing consumers’ awareness

of auto insurance policies’ scopes of coverage.

Future research on this topic may extend the contributions of this study in at

least three ways. First, a comparable study with larger sample size and randomized

dissemination might ask questions that test the sensitivity of respondents’ WTP with
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respect to different values for variables such as deductible amount or scope of cov-

erage (e.g., damages not covered if driver advances into inundated area) to better

understand generalizability of this chapter’s results. Second, an empirical analysis

of proprietary insurance claims data disaggregated at the peril-level for flood haz-

ard would complement the sample data describing vehicle owners’ individual vehicle

flood damage experiences. Third, a microeconomic study of vehicle owners’ WTP for

peril-specific auto insurance coverage relative to the comprehensive insurance prices

they are offered in the marketplace may reveal opportunities for improved pricing of

weather and climate risks into auto insurance markets.

This dissertation demonstrates key US household assets of residential property

and vehicles have widespread exposure to climate change-intensified flood hazards.

Many US households are vulnerable to adverse impacts from flood exposure, including

through these assets. Despite current and projected risks, substantial opportunities

exist which cana catalyze transformative adaptation actions that will help steer house-

holds and society in the direction of equitable, climate resilient development. This

dissertation produces, analyzes, and interprets policy-relevant evidence that may sup-

port individuals, firms, and policymakers in their flood risk management decisions.

Our built environments and the people who rely on them are unlikely to vacate coasts

and watersheds overnight– in the coming years and decades, scholarship that is both

rigorous and decision-relevant will remain essential to help mitigate future flood losses

and promote well-being in waterfront communities.
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APPENDIX

A.1 Chapter one supplemental materials: Estimat-

ing effects of projected mean sea level rise

exposure on measures of residential property

value: evidence from the southeastern United

States

A.1.1 Additional description of empirical methods

In Equation 2.1 in the main text, the β1 parameter represents the difference in

the average price of unexposed properties and exposed properties outside the SFHA

in the pre-AR3 period. This parameter captures the location effect of being in the sea

level rise (SLR)-plain in the pre-AR3 period. β2 captures changes in transaction prices

in the pre-AR3 period and corresponds to the difference between average transaction

price among unexposed properties in the pre-AR3 period and post-AR3 period. β3

represents the price effect of being inside a SFHA relative to being outside a SFHA

among properties unexposed to SLR of magnitude m.

β4 corresponds to an interaction term between the post-AR3 dummy variable and

Exposure variables, and captures temporal variation in the price effect of being in the

159
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SLR-plain in the post-AR3 period relative to pre-AR3 period. β5 tests whether price

effects of being in the SLR-plain across the sample period are statistically different

from zero among properties inside a Federal Emergency Management Agency (FEMA)

Special Flood Hazard Area (SFHA) as compared with those outside FEMA’s SFHA.

β6 captures temporal variation in the price effects of SFHA status in the post-AR3

period relative to the pre-AR3 period, and are hypothesized to be zero. β7 is a

cornerstone parameter of interest, constituting the triple-difference estimator. This

parameter is so-called as it represents the difference between (i) the difference between

average transaction price in the post-AR3 and pre-AR3 period of properties both in

the SLR-plain and SFHA; (ii) the difference between average transaction price in the

post-AR3 period and pre-AR3 period of properties not in the SLR-plain but in the

SFHA; and (3) the difference between average transaction price in the post-AR3 and

pre-AR3 period among properties in the SLR-plain but not in the SFHA.

The identifying triple-difference parallel trend assumption as noted in Olden

and Møen (2022) requires the relative outcome for properties “in the SFHA” vis à-vis

properties “outside the SFHA” among SLR-exposed properties to pre-trend in the

same way as the relative outcome of properties “in the SFHA” vis-à-vis properties

“outside the SFHA” in the unexposed group. Figures A.5-A.9 include parallel trend

visualizations for average transaction price by year across SLR-plain status and SFHA

status, respectively, as well as the triple-difference parallel trend assumption described

above. Inspections of these visualizations do not appear to preclude valid difference-

in-differences or triple-difference estimation. The analysis assumes treatment effects

are constant over time (Goodman-Bacon 2021).

A simplified example of the derivation for β7 in Equation 2.1 is shown below in

Equation A.1 and draws from Wooldridge (2010).
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β̂7 = [(PriceExposed, SFHA, Post-AR3 − PriceExposed, SFHA, Pre-AR3)−

(PriceNot exposed, SFHA, Post-AR3 − PriceNot exposed, SFHA, Pre-AR3)]−

[(PriceExposed, Not in SFHA,Post-AR3 − PriceExposed, Not in SFHA, Pre-AR3)−

(PriceNot exposed, Not in SFHA, Post-AR3 − PriceNot exposed, Not in SFHA, Pre-AR3)]

(A.1)

Figure A.1: Google Trends results for “sea level rise” search term, 2004-2024.

A.1.2 Exploring heterogeneous effects of community race and

income on measures of residential property value

A.1.2.1 Description of data

In order to control for local community characteristics and explore heterogeneity

in price effects of GMSLR across demographic dimensions—specifically the racial

composition and median household income of an area— census tract-level data from

the United States Census Bureau’s (USCB) American Community Survey (ACS) five-

year estimates were sourced for this purpose. According to the US Census Bureau,
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Figure A.2: Sample transactions not exposed to six feet of sea level rise (N=401,103)

census tracts are small subdivisions of a county with an “optimum size of 4,000

people” and generally range from 1,200-8,000 people. Figure A.10 displays the coastal

census tracts included in the analysis, all of which contain at least a portion of area

that is within a quarter-mile of the shoreline as defined by the National Oceanic

and Atmospheric Administration (NOAA). Census tracts typically cover smaller land

areas in areas with higher population densities, which explains census tracts that are

small by land area in dense urban areas such as Miami-Dade County. Annual tract-

level data were accessed for each year for which ACS data were available, in this case

2009-2020 (Walker, 2021).

Census data are available for 285,729 of the transactions in coastal tracts shown

in Table A.3; this subsample is analyzed in complement with the larger ZTRAX sam-

ple. Among transactions in the sample for which census data are available, the average
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Figure A.3: Transactions by shore distance and six-foot SLR-plain status (N=637,451)
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census tract median income and share of the population identified as non-Hispanic

Black or African-American were $66,794 and 3.9%, respectively. The median house-

hold incomes from 2016-2020 in Florida, Georgia, North Carolina, and South Car-

olina, respectively, were $57,703, $61,224, $54,864, and $56,642, which suggests the

census tracts in which sample transactions occurred tend to have median household

incomes above state averages (Walker, 2021). Regarding racial composition, Table

A.3 presents statistics about the statewide and coastal census tract populations in

2020, as well as the share of these populations estimated to be non-Hispanic Black or

African-American. Table A.3 indicates Florida, Georgia, North Carolina, and South

Carolina all have substantial non-Hispanic Black or African-American populations

above the national average of 12.1%, however these populations tend to be underrep-

resented in coastal census tracts relative to the statewide populations. Additionally,

Florida has both the largest statewide and coastal census tract population among

the four states analyzed, and its population in coastal census tracts represents the
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Figure A.4: Six-foot SLR-plain status of sample transactions by elevation above NAVD88 (feet)
[N=637,451]
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greatest share of the total state population with an estimated 29.2% of Florida res-

idents residing in census tracts within 0.25 miles of the shoreline. Among census

tracts in Florida, Georgia, North Carolina, and South Carolina within 0.25 miles of

the shoreline for which data were available, approximately 14.4% of the population

in 2020 was non-Hispanic Black or African-American (Walker, 2021).

Table A.3 suggests there are substantial non-Hispanic Black or African-American

populations in shore-adjacent census tracts in the study area, which is corroborated

in the geography literature (Hardy et al., 2017). However, the census tracts in

which property transactions took place tended to have smaller non-Hispanic Black or

African-American shares of the population than the coastal study area at large. Fur-

ther, as shown in Figures A.11 and A.12, the vast majority of sample transactions take

place in census tracts in which a small share of the tract population is non-Hispanic

Black or African-American. One possible explanation for this observation is a low
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Figure A.5: Parallel trends, transactions inside and outside three-foot SLR-plain (N=637,451)
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national homeownership rate among the non-Hispanic Black or African-American

population relative to the national average.

Model specifications shown in Equations (A.2) and (A.3) are run to explore

heterogeneity in price effects across dimensions of income and race at the census

tract-level.

Ln(price)i,Y = β0 + β1Exposurem,i + β2AAc,Y + β3(Exposurem,i ∗ AAc,Y )+

β4(SFHAi) + β5(Exposurem,i ∗ SFHAi) + β6Agei,Y + β7SFi + λBR,CN,D,E,Y,Z + ǫi,Y

(A.2)
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Figure A.6: Parallel trends, transactions inside and outside six-foot SLR-plain
(N=637,451)
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Ln(price)i,Y = β0 + β1Exposurem,i + β2Ic,Y + β3(Exposurem,i ∗ Ic,Y )+

β4(SFHAi) + β5(Exposurem,i ∗ SFHAi) + β6Agei,Y + β7SFi + λBR,CN,D,E,Y,Z + ǫi,Y

(A.3)

A.1.2.2 Transaction price results by share of census tract non-Hispanic

Black or African-American

Table A.4 includes a total of eight sets of estimation results corresponding with

variations of model specification shown in Equation (A.2). The sample used in this

analysis includes 285,729 transactions from 2009-2020 for which census tract-level

demographic data were available, and thus is unable to exploit temporal variation in
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Figure A.7: Parallel trends, transactions inside and outside SFHA (N=637,451)
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global scientific consensus about anthropogenic GMSLR as proxied by the Intergov-

ernmental Panel on Climate Change’s (IPCC) Third Assessment Report. Columns

1a, 1b, 2a, and 2b present results of reference estimations without the key new in-

dependent variable of interest, non-Hispanic Black or African-American share of the

census tract population. In estimates of β1 in columns 1a and 2a, being located in

the SLR-plain appears to suggest negative and statistically significant price effects (at

p<0.1 for three feet of SLR, p<0.01 for six feet of SLR) similar to main results shown

in Equation (2.1). However, when incorporating the SFHA interaction term in speci-

fications shown in columns 1b and 2b, β1 estimates are statistically indistinguishable

from zero. These findings are consistent with those from model (1) which suggest

the possibility that extant flood risk, and not GMSLR alone, may drive negative β1

parameter estimates when SFHA status is not sufficiently controlled for.

Estimates shown in Table A.4 columns 1c, 1d, 2c, and 2d incorporate Census Bu-

reau data on census tract-level non-Hispanic Black or African-American population
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Figure A.8: Parallel trends, triple differences (three-foot SLR-plain) [N=637,451]
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share. While these results do not provide compelling evidence of a SLR-plain status

discount nor a more pronounced SLR-plain discount in areas with larger non-Hispanic

Black or African-American populations as hypothesized, they do indicate substantial

differences in otherwise observably equivalent properties based on the share of the

Black population in the census tract in which the property is transacted. While

estimates of β3 in model specification Equation (A.2) do not suggest a coherent or

meaningful relationship between SLR-plain status and census tract race, β2 estimates

do indicate that a 10% increase in the share of a census tract’s non-Hispanic Black or

African American population share is associated with a -4.3% (-6.5% to -2.0%, 95%

CI) change in transaction price ceteris paribus. These results suggest, on average, as

coastal census tracts’ non-Hispanic Black or African-American populations increase,

property transaction prices decrease. Figure A.11 shows a scatter plot and least

fit line representing transaction prices by transactions’ exposure statuses vis-à-vis six

feet of SLR and share of census tract that is non-Hispanic Black or African-American.
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Figure A.9: Parallel trends, triple differences (six-foot SLR-plain) [N=637,451]
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This plot indicates there is significant variation in SLR exposure across transaction

price and census tract non-Hispanic Black or African-American population. Addition-

ally, the figure clearly illustrates the negative correlation between transaction price

and Black population. Figure A.12 shows similar results, but only for the subset of

transactions located in the six-foot SLR-plain.

While previous studies have found evidence property values tend to be lower

on average in areas with larger Black populations when compared with similar prop-

erties in areas with smaller Black populations (Harris, 1999), this study is the first

to produce definitive evidence this is also the case in shore-adjacent areas in the

southeastern US which face substantial threat of increased flood exposure and/or

permanent inundation due to GMSLR. While this study does not provide evidence of

a negative price effect of a property being located in the SLR-plain as hypothesized,

across specifications I find consistent evidence that coastal properties located in cen-

sus tracts with larger non-Hispanic Black or African-American populations tend to
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Figure A.10: Census tracts represented in demographic data sample (N=1,976)

sell for less than observably equivalent properties with smaller non-Hispanic Black or

African-American populations.

A.1.2.3 Transaction price results by census tract income

Table A.5 contains results which correspond to the model in Equation (A.3).

Across all four shown specifications in the table, transaction price is positively corre-

lated at p<0.01 with the median income of the census tract in which the transacted

property was located. Results are similar for both SLR magnitudes in columns 1b

and 2b, suggesting that on average a 1% increase in census tract median household in-

come corresponds to an approximate 0.3% increase in transaction price holding other

observed factors constant. Estimates shown in columns 1a and 1b do not provide ev-

idence to suggest properties in the three-foot SLR-plain sold for any discount relative

to comparable properties outside the SLR-plain. Similar to findings in the main text,

column 2b suggests some interactive negative price effect for being located in both

the six-foot SLR-plain and a SFHA. Additionally, the parameter estimate for β3 from
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model in Equation (A.3) is statistically significant at (p<0.1), and provides some

weak evidence that negative price effects of being in the six-foot SLR-plain emerge

as census tract income increases. These findings are somewhat consistent with Bern-

stein et al. (2019) conclusions about negative price effects primarily emerging among

“sophisticated” buyers.
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Table A.1: Summary statistics, property transactions, 1993-2022

Inside three-foot SLR-plain Outside three-foot SLR-plain

N Mean St. Dev. N Mean St. Dev.
Sales price ($, thousands)
Florida 38,152 481.0 640.2 553,839 386.0 583.2
Georgia 437 383.4 225.0 6,201 340.3 271.7
North Carolina 141 415.8 399.2 1,405 403.7 473.7
South Carolina 1,204 423.3 399.8 36,072 384.5 486.2
Total 39,934 478.0 630.6 597,517 385.5 575.2

# of bedrooms
Florida 38,152 2.5 1.0 553,839 2.7 1.0
Georgia 437 3.2 0.8 6,201 3.0 0.9
North Carolina 141 3.4 1.2 1,405 3.3 1.1
South Carolina 1,204 3.1 1.2 36,072 2.5 1.3
Total 39,934 2.5 1.0 597,517 2.7 1.0

Building area sq. ft.
Florida 38,152 1,706 1,082 553,839 1,872 1,093
Georgia 437 2,118 911 6,201 2,003 927
North Carolina 141 1,939 879 1,405 1,930 994
South Carolina 1,204 2,145 1,156 36,072 1,907 1,333
Total 39,934 1,725 1,086 597,517 1,876 1,108

Distance to shore (ft.)
Florida 38,152 297.7 295.0 553,839 504.9 378.5
Georgia 437 707.8 387.2 6,201 752.4 377.6
North Carolina 141 532.4 407.1 1,405 600.7 374.0
South Carolina 1,204 551.1 389.7 36,072 607.1 363.9
Total 39,934 310.6 306.1 597,517 27.4 21.1

Elevation (ft.)
Florida 38,152 5.2 1.2 553,839 9.6 9.9
Georgia 437 4.8 2.1 6,201 24.6 42.9
North Carolina 141 3.4 3.7 1,405 10.3 7.3
South Carolina 1,204 4.6 2.9 36,072 12.5 10.3
Total 39,934 5.2 1.3 597,517 9.9 10.9

Property age (years)
Florida 38,152 27.8 23.2 553,839 27.7 21.1
Georgia 437 28.5 23.3 6,201 35.2 30.7
North Carolina 141 26.5 17.6 1,405 27.9 19.4
South Carolina 1,204 25.2 27.6 36,072 21.8 18.5
Total 39,934 27.7 23.3 597,517 27.4 21.1

Special Flood Hazard Area status
Florida 38,152 0.99 0.12 553,839 0.41 0.49
Georgia 437 1.0 0.0 6,201 0.30 0.46
North Carolina 141 0.97 0.19 1,405 0.32 0.47
South Carolina 1,204 0.99 0.12 36,072 0.40 0.49
Total 39,934 0.99 0.12 597,517 0.41 0.49
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Table A.2: National Structure Inventory summary statistics, 2022

Inside three-foot SLR-plain Outside three-foot SLR-plain

N Mean St. Dev. N Mean St. Dev.
Structure value ($, thousands)
Florida 65,155 227.5 368.6 967,756 224.8 308.1
Georgia 1,464 270.1 364.8 20,090 282.2 352.0
North Carolina 9,995 166.6 148.7 121,708 207.3 286.9
South Carolina 4,804 233.8 187.7 68,645 338.3 464.5
Total 81,418 221.2 341.2 1,178,199 230.6 319.3

Distance to shore (ft.)
Florida 65,155 291.2 297.5 967,756 508.8 384.5
Georgia 1,464 619.4 416.2 20,090 731.4 372.8
North Carolina 9,995 405.8 354.8 121,708 571.7 380.8
South Carolina 4,804 495.3 380.7 68,645 690.7 372.9
Total 81,418 323.2 320.8 1,178,199 529.7 386.8

Building area sq. ft.
Florida 65,155 2,113 4,051 967,756 2,123 2,942
Georgia 1,464 2,463 3,873 20,090 2,639 2,950
North Carolina 9,995 1,758 2,219 121,708 2,133 2,264
South Carolina 4,804 1,991 1,302 68,645 2,938 3,654
Total 81,418 2,069 3,758 1,178,199 2,180 2,964

Elevation (ft.)
Florida 65,155 2.6 1.5 967,756 9.1 7.0
Georgia 1,464 4.6 2.1 20,090 24.1 43.9
North Carolina 9,995 2.8 1.1 121,708 11.6 7.6
South Carolina 4,804 4.9 2.1 68,645 13.6 17.3
Total 81,418 2.8 1.7 1,178,199 9.9 10.1

Number of stories
Florida 65,155 1.37 1.11 967,756 1.24 0.80
Georgia 1,464 1.58 1.05 20,090 1.48 1.21
North Carolina 9,995 1.38 0.85 121,708 1.39 0.81
South Carolina 4,804 1.70 0.95 68,645 1.58 0.92
Total 81,418 1.39 1.07 1,178,199 1.28 0.82

Special Flood Hazard Area status
Florida 65,155 0.82 0.38 967,756 0.33 0.47
Georgia 1,464 1.0 0.00 20,090 0.34 0.47
North Carolina 9,995 0.93 0.26 121,708 0.35 0.48
South Carolina 4,804 0.62 0.49 68,645 0.36 0.48
Total 81,418 0.83 0.38 1,178,199 0.34 0.47
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Table A.3: State and coastal census tract populations, 2020

Total Population in Share of total Share of coastal census
State population, coastal census population tract population

2020 tracts, 2020 BAA, 2020 BAA, 2020
Florida 21,216,924 6,190,920 15.9% 12.7%
Georgia 10,516,579 334,012 31.6% 26.5%

North Carolina 10,386,227 735,012 21.4% 16.0%
South Carolina 5,091,517 790,391 26.4% 20.9%

Total 47,211,247 17.1% 21.7% 14.4%

Note: “BAA” is defined as “non-Hispanic Black or African-American.”
Source: US Census Bureau.
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Figure A.11: Transaction price by census tract race and six-foot SLR-plain status, 2009-2020 (N=285,729
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Figure A.12: Transaction price by census tract race, property transactions in six-foot SLR-plain (N=109,259)
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Table A.4: Estimated price effect of SLR exposure by SLR magnitude and BAA share of census tract

Dependent variable: Ln(Price) [$]
Column: (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
SLR magnitude: 3 ft. 3 ft. 3 ft. 3 ft. 6 ft. 6 ft. 6 ft. 6 ft.
SLR Exposure -0.031* 0.024 -0.024 0.055 -0.044*** -0.006 -0.008 -0.062

(0.017) (0.145) (0.145) (0.152) (0.010) (0.014) (0.014) (0.054)
SFHA dummy 0.016 0.017 0.016 0.017 0.029** 0.051*** 0.050*** 0.050***

(0.112) (0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013)
SLR exposure x SFHA dummy – -0.056 -0.056 -0.056 – -0.058*** -0.055*** -0.055***

– (0.146) (0.145) (0.0145) – (0.017) (0.017) (0.017)

Share census tract BAA† – – -0.044*** -0.044*** – – -0.044*** -0.046***
(0.012) (0.012) (0.012) (0.012)

SLR exposure x (BAA=1) – – – -0.031 – – – 0.055
(0.049) (0.054)

SLR exposure x (BAA=2) – – – -0.031 – – – 0.046
(0.063) (0.054)

SLR exposure x (BAA=3) – – – -0.127 – – – -0.011
(0.079) (0.073)

SLR exposure x (BAA=4) – – – -4.6x10−4 – – – 0.085
(0.119) (0.086)

SLR exposure x (BAA=6) – – – 0.069 – – – 0.097
(0.126) (0.090)

SLR exposure x (BAA=7) – – – -0.067 – – – 0.035***
(0.134) (0.115)

SLR exposure x (BAA=8) – – – -0.021 – – – -0.037
(0.136)) (0.086)

SLR exposure x (BAA=9) – – – -0.347*** – – – -0.104
(0.123) (0.086)

SLR exposure x (BAA=10) – – – – – – – 0.020
(0.211)

Property age -0.003*** -0.003*** -0.003*** -0.003*** -0.003*** -0.003*** -0.003*** -0.003***

(3.7x10−4) (3.8x10−4) (3.7x10−4) (3.7x10−4) (3.8x10−4) (3.8x10−4) (3.8x10−4) (3.7x10−4)
Property sq. ft. 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004***

7.3x10−6 7.3x10−6 7.3x10−6 7.3x10−6 7.3x10−6 7.3x10−6 7.3x10−6 7.3x10−6

Fixed effects
BR*CN*D*E*Y*Z Yes Yes Yes Yes Yes Yes Yes Yes
# of fixed effects 80,393 80,393 80,393 80,393 80,393 80,393 80,393 80,393
Fit statistics
Observations 285,729 285,729 285,729 285,729 285,729 285,729 285,729 285,729

Adj. R2 0.799081 0.799083 0.799561 0.799573 0.799254 0.799366 0.799836 0.799961

Significance codes: ***:0.01; **:.05, *:0.1. Standard errors in parentheses and clustered at the zip code level.
†“BAA” is an abbreviation for “non-Hispanic Black or African-American.” This variable takes on discrete values from 1 to 10. A value of 1 indicates between 0-10% of the census tract in which the
transacted property is located was non-Hispanic Black or African-American in the transaction year. A value of 10 indicates between 90.1%-100% of the census tract in which the transacted property is
located was non-Hispanic Black or African-American in the transaction year. The reference level is BAA=1.
Note: Abbreviation/acronym definitions: “SLR” = sea level rise; “sq. ft” = square feet; “IPCC” = Intergovernmental Panel on Climate Change Third Assessment Report; “CN” = condominium
dummy; “Z” = zip code; “Y” = transaction year; “SFHA” = Special Flood Hazard Area. Note: the “distance to coast” variable is categorical with five categories. All observations with elevations of 6
feet or less take on a value of 1, all observations with elevations from 6-12 feet take on a value of 2, etc., and all observations with elevations greater than 24 feet take on a value of 5. The “elevation”
variable is categorical with six categories. All observations with distance to shore values of 0-53 feet take on a value of 1; 54-106 feet a value of 2; 107-211 a value of 3; 212-422 a value of 4; 423-845 feet
a value of 5; greater than 845 feet a value of 6.
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Table A.5: Estimated price effect of SLR exposure by SLR magnitude and census tract median household income

Dependent variable: Ln(Price) [$]
Model: (1a) (1b) (2a) (2b)
SLR magnitude: 3 ft. 3 ft. 6 ft. 6 ft.
Variables
SLR Exposure 0.037 0.299 -0.001 -0.500*

(0.150) (0.483) (0.014) (0.270)
SFHA dummy 0.018 0.0176 0.048*** 0.047***

(0.011) (0.012) (0.013) (0.013)
SLR exposure x SFHA dummy -0.063 -0.059 -0.51*** -0.050***

(0.151) (0.152) (0.017) (0.017)
Ln(Median census tract income)[$] 0.301*** 0.303*** 0.298*** 0.320***

(0.027) (0.027) (0.027) (0.028)
SLR exposure x Ln(Median census tract income) [$] – -0.024 – -0.046*

(0.041) (0.024)
Property age -0.003*** -0.003*** -0.003*** -0.003***

(3.7x10−4) (3.7x10−4) (3.7x10−4) (3.7x10−4)
Property sq. ft. 0.0004*** 0.0004*** 0.0004*** 0.0004***

(7.1x10−6) (7.1x10−6) (7.1x10−6) (7.1x10−6)
Fixed effects
BR*CN*D*E*Y*Z Yes Yes Yes Yes
# of fixed effects 80,393 80,393 80,393 80,393
Fit statistics
Observations 285,729 285,729 285,729 285,729

Adj. R2 0.802987 0.802991 0.803212 0.803255

Significance codes: ***:0.01; **:.05, *:0.1. Standard errors in parentheses and clustered at the zip code level.
Note: Abbreviation/acronym definitions: “SLR” = sea level rise; “sq. ft” = square feet; “IPCC” = Intergovernmental Panel on Climate Change Third Assessment Report; “CN” = condominium
dummy; “Z” = zip code; “Y” = transaction year; “SFHA” = Special Flood Hazard Area. Note: the “distance to coast” variable is categorical with five categories. All observations with elevations of 6
feet or less take on a value of 1, all observations with elevations from 6-12 feet take on a value of 2, etc., and all observations with elevations greater than 24 feet take on a value of 5. The “elevation”
variable is categorical with six categories. All observations with distance to shore values of 0-53 feet take on a value of 1; 54-106 feet a value of 2; 107-211 a value of 3; 212-422 a value of 4; 423-845 feet
a value of 5; greater than 845 feet a value of 6.
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A.1.2.4 NSI results

Table A.6 presents results from modified estimations of the models in Equations

(A.2) and (A.3) using National Structure Inventory (NSI) data. Estimates for β1

shown in columns 1a, 1c, and 2d provide some evidence that structures in the three-

foot and six-foot SLR-plains were valued less than comparable structures outside the

SLR-plain, on average. Similar to main text results, results in columns 1b, 1d, and

2d are suggestive that there is an negative interactive valuation effect for a structure

being located in both a SLR-plain and a SFHA. However, these findings are not con-

sistent across specifications.

Across results shown in columns 1a through 2d, the parameter estimates for β2

indicate strong statistically and economically significant associations between struc-

ture depreciated replacement value (DRV) and the median income and race of the

census tract in which the structure is located. For example, in column 1c results find

that a 10% increase in census tract non-Hispanic Black or African-American popula-

tion share is associated with a -3.8% decrease in DRV at significance level p<0.01. In

column 1d, estimates indicate a 10% increase in census tract median income is associ-

ated with a 2.5% increase in DRV, also at p<0.01 significance level. This findings have

policy implications, given the fact lower DRVs in census tracts with lower incomes and

higher shares of the population that are non-Hispanic Black or African-American may

influence the benefit-cost ratios of flood mitigation projects. Improving our under-

standing of the DRV valuation processes which lead to these statistical relationships

may better inform policy design and meet equity objectives where applicable.
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Table A.6: National Structure Inventory regression results

Dependent variable: Ln(structure DRV)[$]
Model: (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
SLR magnitude: 3 ft. 3 ft. 3 ft. 3 ft. 6 ft. 6 ft. 6 ft. 6 ft.
Variables
SLR exposure -0.023** -0.016 -0.030** 0.270 0.005 -0.004 0.004 0.664***

(0.011) (0.012) (0.013) (0.191) (0.007) (0.007) (0.011) (0.155)
SFHA dummy -0.010 -0.010 -0.010 -0.010 -0.006 -0.006 -0.006 -0.004

(0.007) (0.006) (0.007) (0.006) (0.009) (0.008) (0.009) (0.008)
SFHA dummy x SLR exposure -0.020 -0.025* -0.021 -0.026* -0.014 -0.016 -0.014 -0.018*

(0.013) (0.014) (0.013) (0.013) (0.010) (0.010) (0.010) (0.010)

Structure sq. ft. 1.9*10−4*** 1.9*10−4*** 1.9*10−4*** 1.9*10−4*** 1.9*10−4*** 1.9*10−4*** 1.9*10−4*** 1.9*10−4***

(6.8x10−6) (6.7x10−6) (6.7x10−6) (6.7x10−6) (6.8x10−6) (6.7x10−6) (6.8x10−6) (6.7x10−6)
Share census tract AA -0.038*** – -0.039*** – -0.038*** – -0.038*** –

(0.005) (0.005) (0.005) (0.004)
Ln(Census tract median income)[$] – 0.247*** – 0.249*** – 0.248*** – 0.270***

(0.015) (0.015) (0.002) (0.017)

SLR exposure x Share BAA – – 0.006 – – – 1.6x10−4) –
(0.005) (0.005)

SLR exposure x Ln(income) – – – -0.026 – – – -0.059***
(0.017) (0.014)

Fixed effects
BT*D*E*OT*S*Z Yes Yes Yes Yes Yes Yes Yes Yes

# of fixed effects 100,419 99,467 100,419 99,467 100,419 99,467 100,419 99,467
Fit statistics
Observations 1,185,496 1,175,813 1,185,496 1,175,813 1,185,496 1,175,813 1,185,496 1,175,813

Adj. R2 0.860855 0.86707 0.860858 0.86708 0.860719 0.866956 0.860719 0.86709

Significance codes: ***:0.01; **:.05, *:0.1. Standard errors in parentheses and clustered at the zip code level when “Z” fixed effects included. Otherwise, standard errors are heteroskedasticity-robust using the
White correction.
Note: Abbreviation/acronym definitions: “SLR” = sea level rise; “sq. ft” = square feet; “IPCC” = Intergovernmental Panel on Climate Change Third Assessment Report; “CN” = condominium
dummy; “Z” = zip code; “OT” = occupancy type; “BT” = building type; “S” = number of stories; “SFHA” = Special Flood Hazard Area. Note: the “distance to coast” variable is categorical with five
categories. All observations with elevations of 6 feet or less take on a value of 1, all observations with elevations from 6-12 feet take on a value of 2, etc., and all observations with elevations greater than
24 feet take on a value of 5. The “elevation” variable is categorical with six categories. All observations with distance to shore values of 0-53 feet take on a value of 1; 54-106 feet a value of 2; 107-211 a
value of 3; 212-422 a value of 4; 423-845 feet a value of 5; greater than 845 feet a value of 6
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A.2 Chapter two supplemental materials: Driving

up flood risks

Figure A.13: Distribution of FEMA IHP TA awards by dollar amount
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Figure A.14: Number of IHP applications reporting vehicle flood damage by income group, percentage receiving an award in parentheses
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Figure A.15: Top 12 disaster-state or disaster-territory cases by amount of TA awarded to applicants with vehicle flood damage
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Figure A.16: Approved TA amount by reported water level at IHP applicant primary residence (N=160,565)
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Table A.7: Estimated number of vehicles in FEMA SFHA and MFHA, thousands

(1) (2) (3) (4) (5) (6)
State Est. in 95% CI Est. in SFHA, Est. in 95% CI Est. in MFHA,

SFHA ME disadvantaged MFHA ME disadvantaged
Alabama 185.9 ±1.1 81.1 235.5 ±1.5 103.1
Arizona 163.6 ±1.4 72.5 2,941.5 ±11.9 1,193.5
Arkansas 149.0 ±1.0 71.8 224.1 ±1.9 118.7
California 999.6 ±3.3 531.6 3,339.4 ±8.9 1,951.3
Colorado 129.8 ±0.8 41.1 202.5 ±1.4 73.2
Connecticut 153.1 ±1.2 48.7 199.8 ±1.5 63.2
Delaware 40.9 ±0.8 11.5 50.2 ±0.9 15.5
Florida 2,917.4 ±16.7 1,269.5 4,144.0 ±23.8 1,849.0
Georgia 276.7 ±1.3 127.5 386.5 ±2.1 176.6
Idaho 32.5 ±0.5 9.7 78.2 ±1.3 23.9
Illinois 325.7 ±1.2 96.9 424.1 ±1.7 134.2
Indiana 280.9 ±1.4 72.5 362.5 ±1.8 102.0
Iowa 127.3 ±0.6 27.0 159.3 ±0.8 34.7
Kansas 124.5 ±0.7 35.0 199.9 ±1.4 74.6
Kentucky 199.5 ±1.1 70.6 265.2 ±1.7 99.3
Louisiana 631.4 ±4.5 269.4 923.1 ±6.2 441.4
Maine 15.9 ±0.2 3.4 18.3 ±0.2 4.3
Maryland 121.0 ±0.8 33.2 154.2 ±1.0 43.9
Massachusetts 232.6 ±1.5 58.2 325.9 ±1.9 85.2
Michigan 191.8 ±1.0 45.1 255.7 ±1.4 62.3
Minnesota 90.4 ±0.5 18.9 136.6 ±0.9 33.4
Mississippi 232.6 ±1.9 132.4 325.9 ±2.9 185.5
Missouri 208.6 ±1.0 59.7 254.1 ±1.2 71.9
Montana 29.6 ±0.4 6.1 50.3 ±0.6 9.1
Nebraska 104.1 ±0.8 31.2 163.7 ±1.5 58.0
Nevada 59.2 ±0.8 25.7 222.8 ±2.3 99.6
New Hampshire 42.0 ±0.4 6.6 60.1 ±0.5 11.3
New Jersey 436.8 ±2.8 109.4 581.4 ±3.4 157.7
New Mexico 105.5 ±1.3 71.6 133.9 ±1.5 89.5
New York 486.5 ±3.3 168.4 721.5 ±4.6 288.1
North Carolina 312.0 ±1.4 139.0 401.6 ±1.9 184.1
North Dakota 49.0 ±0.9 5.2 125.2 ±2.2 18.1
Ohio 333.9 ±1.4 90.9 420.8 ±1.7 116.3
Oklahoma 161.8 ±0.8 82.7 236.8 ±1.4 129.1
Oregon 138.9 ±0.9 63.3 221.8 ±1.8 108.4
Pennsylvania 376.0 ±1.4 88.0 511.6 ±2.0 132.4
Rhode Island 43.5 ±0.5 9.8 69.8 ±0.9 14.2
South Carolina 218.0 ±1.9 57.1 338.6 ±3.0 84.3
South Dakota 33.8 ±0.4 8.1 50.6 ±0.6 11.9
Tennessee 214.5 ±1.0 85.0 275.9 ±1.3 114.3
Texas 1,355.4 ±4.6 735.7 2,116.9 ±7.2 1,144.5
Utah 38.8 ±0.3 9.5 91.7 ±0.9 26.6
Vermont 16.4 ±0.2 4.3 20.3 ±0.3 5.2
Virginia 272.7 ±1.7 69.8 368.9 ±2.1 94.5
Washington 142.8 ±0.9 53.7 185.8 ±1.1 68.7
West Virginia 121.6 ±0.9 34.5 164.4 ±1.4 49.3
Wisconsin 136.2 ±0.6 28.8 181.1 ±1.0 41.2
Wyoming 11.6 ±0.2 2.5 22.0 ±0.4 5.2
Total 13,074.9 ±19.9 5,174.2 23,341.3 ±31.8 10,000.2



186

Table A.8: Estimated value of flood-exposed vehicles (millions) [$]

State DM-SFHA DM-MFHA NSI-SFHA NSI-MFHA NSI-FSF-A NSI-FSF-B
(1) (2) (3) (4) (5) (6)

Alabama $4,345.0 $5,675.2 $5,503.1 $5,943.7 $524.3 $667.9
Arizona $3,822.1 $68,734.5 $4,732.5 $82,735.3 $4,182.0 $5,779.8
Arkansas $3,480.5 $5,236.9 $2,039.0 $4,002.1 $1,538.8 $2,358.7
California $23,356.7 $78,031.4 $14,992.1 $65,279.8 $44,084.0 $64,327.3
Colorado $3,033.3 $4,731.7 $3,624.0 $6,460.1 $2,702.6 $4,021.1
Connecticut $3,576.5 $4,644.7 $1,983.3 $2,982.3 $2,992.3 $4,988.9
Delaware $955.0 $1,173.4 $1,642.2 $1,928.8 $885.1 $2,196.3
Florida $68,172 $81,409.7 $67,213.5 $103,362.4 $59,840.0 $78,630.3
Georgia $6,465.6 $9,030.4 $5,373.1 $8,961.4 $7,865 $10,472.5
Idaho $759.4 $1,826.2 $610.3 $1,901.0 $2,979.2 $3,617.8
Illinois $7,610.2 $9,909.8 $2,781.0 $4,599.0 $10,191.9 $13,932.7
Indiana $6,564.4 $8,470.8 $2,843.3 $4,539.4 $4,450.8 $6,181.7
Iowa $2,975.5 $3,722.3 $1,725.0 $2,583.3 $3,737.6 $4,902.9
Kansas $2,909.7 $4,672.0 $1,239.7 $3870.6 $2,421.6 $3,231.0
Kentucky $4,662.4 $6,197.9 $3,117.1 $4,900.2 $3,591.0 $5,486.8
Louisiana $14,753.9 21,570.1 $11,324.5 $19,250.6 $15,830.5 $21,826.8
Maine $372.5 $427.9 $242.8 $315.4 $1,011.7 $1,481.4
Maryland $2,826.8 $3,603.1 $1,412.3 $2,269.5 $3,430.0 $5,132.1
Massachusetts $5,434.2 $7,426.6 $3,542.6 $5,424.8 $7,438.0 $11,605.1
Michigan $4,481.5 $5,975..4 $2,536.1 $3,748.7 $6,194.2 $9,149.9
Minnesota $2,112.4 $3,191.1 $751.2 $1,728.9 $4,794.4 $6,414.2
Mississippi $5,434.5 $7,614.3 $4,516.6 $7,192.8 $3,042.3 $4,241.0
Missouri $4,873.3 $5,936.7 $2,435.8 $3,424.1 $4,459.3 $6,252.4
Montana $691.1 $1,176.0 $573.5 $1,100.1 $2,314.9 $2,831.5
Nebraska $2,431.5 $3,825.0 $1,290.0 $2,425.9 $804.0 $1,324.4
Nevada $1,383.7 $5,205.5 $1,053.8 $6,043.4 $1,538.1 $2,369.9
New Hampshire $982.4 $1,404.5 $719.6 $1,059.1 $1,065.5 $1,860.5
New Jersey $10,206.8 $13,585.9 $6,974.2 $9,512.3 $8,455.3 $11,003.9
New Mexico $2,465.0 $3,128.6 $3,326.5 $4,139.3 $2,306.6 $3,363.9
New York $11,368.4 $16,859.5 $7,075.0 $11,934.7 $16,242.1 $21,707.4
North Carolina $7,290.1 $9,383.5 $4,765.9 $7,112.9 $9,337.7 $12,737.4
North Dakota $1,144.9 $2,924 $527.2 $2,660.8 $569.4 $712.8
Ohio $7,801.4 $9,833.0 $4,094.6 $6,249.9 $8,294.4 $11,484.5
Oklahoma $3781.0 $5,533.3 $1,447.7 $3,094.1 $1,468.5 $2,674.7
Oregon $3,245.4 $5,182.1 $6,154.7 $11,550.7 $7,391.2 $10,289.9
Pennsylvania $8,785.2 $11,954.0 $5,080.3 $8,058.8 $12,839.0 $19,342.5
Rhode Island $1,015.5 $1,632.1 $708.5 $1,265.8 $1,014.1 $1,362.7
South Carolina $5,094.3 $7,911.5 $6,439.1 $11,074.9 $5,156.8 $8,210.4
South Dakota $790.0 $1,182.0 $463.0 $1,076.7 $608.1 $847.9
Tennessee $5,012.3 $6,446.2 $2,633.8 $4,539.1 $4,596.3 $7,412.6
Texas $31,672.5 $49,465.4 $18,359.5 $34,206.9 $21,721.3 $32,878.1
Utah $905.6 $2,143.5 $379.0 $1,452.9 $1,918.4 $2,737.5
Vermont $383.3 $474.2 $324.6 $448.0 $770.4 $1,191.0
Virginia $6,372.8 $8,619.2 $3,849.8 $7,080.1 $6,269.7 $9,402.4
Washington $3,336.8 $4,341.2 $2,230.3 $3,188.1 $8,426.5 $11,535.1
West Virginia $2,842.4 $3841.0 $2,451.0 $4,208.4 $4,852.4 $7,269.7
Wisconsin $3,181.7 $4,232.7 $1,199.4 $1,994.6 $3,461.2 $4,939.5
Wyoming $270.2 $514.7 $223.1 $578.7 $927.3 $1,197.4
CONUS total $305,521.4 $529,840.5 $227,599.4 $493,461.0 $330,536.1 $467,586
Vehicle data source DM DM USACE NSI USACE NSI USACE NSI USACE NSI
Flood data source FEMA NFHL FEMA NFHL FEMA NFHL FEMA NFHL FSF-FM FSF-FM
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Figure A.17: Panel (a) shows the estimated number of vehicles in FEMA MFHA, millions, 2020. Panel (b) shows the estimated value of vehicles
in FEMA MFHA, billions ($), 2020 using the dasymetric mapping technique.
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Table A.9: Poisson model results

Dependent Variable: Approved Transportation Assistance amount ($)
Model: (1) (2) (3) (4) (5) (6)

Variables
Household income: $0 -0.0631∗ -0.0967∗∗ -0.1878∗∗∗ -0.2013∗∗∗ -0.1888∗∗∗ -0.1884∗∗∗

(0.0379) (0.0379) (0.0385) (0.0366) (0.0623) (0.0624)
Household income: $1-$15,000 0.6596∗∗∗ 0.6163∗∗∗ 0.4966∗∗∗ 0.6157∗∗∗ 0.6429∗∗∗ 0.6436∗∗∗

(0.0235) (0.0235) (0.0250) (0.0231) (0.0673) (0.0673)
Household income: $15,001-$30,000 0.5213∗∗∗ 0.5025∗∗∗ 0.4285∗∗∗ 0.5009∗∗∗ 0.5121∗∗∗ 0.5124∗∗∗

(0.0242) (0.0242) (0.0250) (0.0230) (0.0374) (0.0374)
Household income: $60,001-$120,000 -0.5311∗∗∗ -0.5139∗∗∗ -0.4408∗∗∗ -0.6104∗∗∗ -0.6082∗∗∗ -0.6073∗∗∗

(0.0469) (0.0469) (0.0472) (0.0451) (0.0507) (0.0506)
Household income: $120,001-$175,000 -1.022∗∗∗ -0.9937∗∗∗ -0.9139∗∗∗ -1.193∗∗∗ -1.189∗∗∗ -1.189∗∗∗

(0.1429) (0.1430) (0.1434) (0.1413) (0.1193) (0.1193)
Household income: >$175,000 -0.8007∗∗∗ -0.7903∗∗∗ -0.7404∗∗∗ -0.9588∗∗∗ -0.9603∗∗∗ -0.9598∗∗∗

(0.1424) (0.1424) (0.1421) (0.1410) (0.1778) (0.1779)
Water level (inches) 0.0098∗∗∗ 0.0096∗∗∗ 0.0096∗∗∗ 0.0045∗∗∗ 0.0030∗∗∗ 0.0030∗∗∗

(0.0004) (0.0004) (0.0004) (0.0003) (0.0008) (0.0008)
Household size: 1 (ref. = 3) – 0.2898∗∗∗ 0.2940∗∗∗ 0.1707∗∗∗ 0.1470∗∗∗ 0.1473∗∗∗

(0.0219) (0.0219) (0.0203) (0.0440) (0.0442)
Household size: 2 (ref. = 3) – 0.0714∗∗∗ 0.0890∗∗∗ 0.0620∗∗∗ 0.0494∗ 0.0500∗∗

(0.0232) (0.0233) (0.0213) (0.0253) (0.0253)
Household size: 4 (ref. = 3) – 0.0217 0.0224 0.0611∗∗ 0.0645∗∗ 0.0651∗∗

(0.0273) (0.0273) (0.0254) (0.0282) (0.0280)
Household size: 5 (ref. = 3) – -0.0542∗ -0.0584∗ 0.0041 0.0150 0.0148

(0.0328) (0.0328) (0.0306) (0.0332) (0.0332)
Household size: >5 (ref. = 3) – -0.0741∗∗ -0.0853∗∗ -0.0048 0.0192 0.0197

(0.0349) (0.0349) (0.0328) (0.0406) (0.0406)
Flood insurance? (ref. = No) – – 0.3723∗∗∗ 0.1682∗∗∗ 0.1625∗∗∗ 0.1613∗∗∗

(0.0276) (0.0259) (0.0463) (0.0464)
Homeowners insurance? (ref. = No) – – -0.5286∗∗∗ -0.3348∗∗∗ -0.3397∗∗∗ -0.3397∗∗∗

(0.0222) (0.0214) (0.0489) (0.0489)

Fixed effects
Disaster number No No No Yes No Yes
County*Year No No No No Yes Yes

Fit statistics
Convergence TRUE TRUE TRUE TRUE TRUE FALSE
Observations 160,564 160,564 160,564 160,037 156,110 155,991
Squared Correlation 0.01215 0.01485 0.01576 0.15699 0.17139 0.17168
Pseudo R2 0.04490 0.04893 0.05736 0.22928 0.24690 0.24740
BIC 533,078,392.4 530,827,464.8 526,123,389.4 429,505,642.7 414,772,379.1 414,348,927.7

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.3 Chapter three supplemental materials: The

willingness to pay for vehicle flood insurance
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Table A.10: WTP estimates by FEMA Special Flood Hazard Area status and level of concern about flooding - log-logistic response model Bishop-
Heberlein

All (N=360) SFHA (N=166) Concerned (N=295)

Estimate 95% CI Estimate 95% CI Estimate 95% CI
All respondents (N=360)
Mean (truncated at max. bid) $180.31 [$ 164.47, $197.36] $239.51 [$212.67, $260.55] $ 196.82 [$180.91, $211.56]
Median $183.96 [ $147.33, $241.09] $463.17 [$279.35, $967.30] $221.08 [$179.02, $285.82]
Mean (truncated at max. bid with adjustment) $282.67 [$232.96, $352.56] $637.75 [$406.48, $1,034.08] $328.07 [$266.24, $407.38]

62 New York-based respondents and 104 Texas-based respondents reported living in a SFHA. 110 New York-based respondents and 185 Texas-based respondents reported being
“somewhat concerned” or “very concerned” about flooding having a negative impact their communities.
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Table A.11: Log-logistic response model results, Bishop-Heberlein random utility model

All SFHA Concerned

Variable (1) (2) (3)

Constant 4.189. -4.70 5.604*
(2.278) (150.935) (2.430)

Household income: < $25,000 (ref. = $100,001-$250,000) -1.099* -4.219** -1.428*
(0.507) (1.322) (0.576)

Household income: $25,001-$50,000 (ref. = $100,001-$250,000) -0.238 -3.102* -0.312
(0.456) (1.281) (0.514)

Household income: $50,001-$100,000 (ref. = $100,001-$250,000) 0.0523 2.236. -0.304
(0.421) (1.227) (0.477)

Household income: >$250,000 (ref. = $100,001-$250,000) -0.911 -2.169 -0.480
(0.763) (1.854) (0.889)

Education: No high school (ref. = Associate’s degree) 1.260 14.640 -0.138
(1.156) (150.893) (1.306)

Education: Some high school (ref. = Associate’s degree) 0.193 2.005* 0.014
(0.500) (0.913) (0.572)

Education: High school diploma or equivalent (ref. = Associate’s degree) 0.0630 0.771 0.180
(0.331) (0.580) (0.381)

Education: Bachelor’s degree (ref. = Associate’s degree) 0.426 0.601 0.348
(0.404) (0.751) (0.471)

Education: Postgraduate degree (ref. = Associate’s degree) 0.399 1.944 0.022
(0.509) (1.304) (0.536)

Ln(Vehicle Value) -0.163 -0.301 -0.050
(0.199) (0.365) (0.223)

In SFHA: Not sure (ref. = No) -0.041 – 0.270
(0.324) (0.386)

In SFHA: Yes (ref. = No) 0.786** – 1.069***
(0.285) (0.322)

VFD: Not sure (ref. = No) 0.275 0.988 0.339
(0.638) (1.517) (0.866)

VFD: Yes, multiple times (ref. = No) 0.547 0.949 0.856*
(0.372) (0.615) (0.407)

VFD: Yes, once (ref. = No) 0.311 0.984. 0.586.

(0.287) (0.517) (0.325)
Vehicle type: Sedan (ref. = other) 1.272** 2.000** 1.696***

(0.402) (0.703) (0.444)
Vehicle type: SUV (ref. = other) 1.028** 2.260** 1.287**

(0.390) (0.693) (0.430)
Vehicle type: Van (ref. = other) 0.469 1.759 0.982

(0.630) (1.164) (0.796)
State: Texas (ref. = New York) -0.159 -0.100 0.088

(0.277) (0.528) ( 0.331)
Concern: Not very concerned (ref. = Not concerned at all) 1.280. 12.352 –

(0.745) (150.883)
Concern: Somewhat concerned (ref. = Not concerned at all) 2.029** 13.949 –

(0.707) (150.882)
Concern: Very concerned (ref. = Not concerned at all) 2.602*** 14.308 –

(0.721) (150.882)
Bid amount -1.158*** -1.171*** -1.327***

(0.099) (0.176) (0.123)
Number of observations: 360 166 295
Log likelihood: -359.73 -123.18 -279.93
AIC 767.47 290.36 601.86
BIC 860.73 358.82 679.29

Significance codes: ***: 0.001; **: 0.01; *: 0.05; .: 0.1.
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A.3.1 Survey instrument text

Text of survey instrument available here.

URL = https://drive.google.com/file/d/1Y16E29HxoxX6Po20QbFl4mllqw6ZLQE9/view?usp=drive link

https://drive.google.com/file/d/1Y16E29HxoxX6Po20QbFl4mllqw6ZLQE9/view?usp=drive_link
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